用于吸附罗丹明 B 染料的珠状二氧化硅吸附剂的合成与性能控制

IF 2.9 4区 工程技术 Q2 CHEMISTRY, MULTIDISCIPLINARY Korean Journal of Chemical Engineering Pub Date : 2024-09-08 DOI:10.1007/s11814-024-00266-3
Jiyull Kim, Hyeona Yu, Sang Bin Kim, Na Yeon Kim, Ji Bong Joo
{"title":"用于吸附罗丹明 B 染料的珠状二氧化硅吸附剂的合成与性能控制","authors":"Jiyull Kim, Hyeona Yu, Sang Bin Kim, Na Yeon Kim, Ji Bong Joo","doi":"10.1007/s11814-024-00266-3","DOIUrl":null,"url":null,"abstract":"<p>In this study, we synthesized Bead-Shaped Silica and evaluated its performance in adsorbing the dye Rhodamine B. The Bead-Shaped Silica (BS) was synthesized without the use of harmful substances. The BS Adsorbent was synthesized using silica powder and the eco-friendly biopolymer sodium alginate through the Egg box junction method. It was found that by adjusting the molar ratio of silica to alginate during the manufacturing process, the specific surface area and pore size could be controlled. The BS-2.5 sample exhibited the highest surface area and adsorption capacity due to the effective removal of alginate during heat treatment. The pseudo-first-order adsorption kinetic constants and effective diffusivity of the BS material decreased with decreasing pore size, while the adsorption capacity increased. The adsorption behavior of Rhodamine B was modeled using Langmuir and Freundlich isotherms. Based on calculations using these models, the BS-2.5 sample, which had the largest surface area, showed the best performance. Additionally, in continuous flow system experiments, the use of BS resulted in clean water production, whereas columns with silica powder experienced structural damage and dye leakage due to severe pressure drops.</p>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"10 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Property Control of Bead-Shaped Silica Adsorbents for Rhodamine B Dye Adsorption\",\"authors\":\"Jiyull Kim, Hyeona Yu, Sang Bin Kim, Na Yeon Kim, Ji Bong Joo\",\"doi\":\"10.1007/s11814-024-00266-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we synthesized Bead-Shaped Silica and evaluated its performance in adsorbing the dye Rhodamine B. The Bead-Shaped Silica (BS) was synthesized without the use of harmful substances. The BS Adsorbent was synthesized using silica powder and the eco-friendly biopolymer sodium alginate through the Egg box junction method. It was found that by adjusting the molar ratio of silica to alginate during the manufacturing process, the specific surface area and pore size could be controlled. The BS-2.5 sample exhibited the highest surface area and adsorption capacity due to the effective removal of alginate during heat treatment. The pseudo-first-order adsorption kinetic constants and effective diffusivity of the BS material decreased with decreasing pore size, while the adsorption capacity increased. The adsorption behavior of Rhodamine B was modeled using Langmuir and Freundlich isotherms. Based on calculations using these models, the BS-2.5 sample, which had the largest surface area, showed the best performance. Additionally, in continuous flow system experiments, the use of BS resulted in clean water production, whereas columns with silica powder experienced structural damage and dye leakage due to severe pressure drops.</p>\",\"PeriodicalId\":684,\"journal\":{\"name\":\"Korean Journal of Chemical Engineering\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11814-024-00266-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11814-024-00266-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们合成了珠状白炭黑,并评估了其吸附罗丹明 B 染料的性能。BS 吸附剂是利用二氧化硅粉末和环保生物聚合物海藻酸钠通过蛋盒连接法合成的。研究发现,在制造过程中通过调整二氧化硅与海藻酸钠的摩尔比,可以控制比表面积和孔径。由于在热处理过程中有效地去除了海藻酸,BS-2.5 样品表现出最高的比表面积和吸附能力。随着孔径的减小,BS 材料的假一阶吸附动力学常数和有效扩散率降低,而吸附容量增加。利用 Langmuir 和 Freundlich 等温线建立了罗丹明 B 的吸附行为模型。根据这些模型的计算结果,比表面积最大的 BS-2.5 样品表现最佳。此外,在连续流系统实验中,使用 BS 能产生干净的水,而使用硅粉的色谱柱则会因严重的压力下降而导致结构损坏和染料泄漏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and Property Control of Bead-Shaped Silica Adsorbents for Rhodamine B Dye Adsorption

In this study, we synthesized Bead-Shaped Silica and evaluated its performance in adsorbing the dye Rhodamine B. The Bead-Shaped Silica (BS) was synthesized without the use of harmful substances. The BS Adsorbent was synthesized using silica powder and the eco-friendly biopolymer sodium alginate through the Egg box junction method. It was found that by adjusting the molar ratio of silica to alginate during the manufacturing process, the specific surface area and pore size could be controlled. The BS-2.5 sample exhibited the highest surface area and adsorption capacity due to the effective removal of alginate during heat treatment. The pseudo-first-order adsorption kinetic constants and effective diffusivity of the BS material decreased with decreasing pore size, while the adsorption capacity increased. The adsorption behavior of Rhodamine B was modeled using Langmuir and Freundlich isotherms. Based on calculations using these models, the BS-2.5 sample, which had the largest surface area, showed the best performance. Additionally, in continuous flow system experiments, the use of BS resulted in clean water production, whereas columns with silica powder experienced structural damage and dye leakage due to severe pressure drops.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Korean Journal of Chemical Engineering
Korean Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
4.60
自引率
11.10%
发文量
310
审稿时长
4.7 months
期刊介绍: The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.
期刊最新文献
Colloidal Semiconductor Cadmium Chalcogenide Nanorods and Nanoplatelets: Growth, Optical Anisotropy and Directed Assembly Special Issue Editorial: Colloidal Quantum Dots Photocatalyst Design Principles for Photocatalytic Hydrogen Production and Benzyl Alcohol Oxidation with CdS Nanosheets Enhanced Energy Storage Capacity of TiO2 Atomic Layered Molybdenum Oxide–Sulfide Negatrode for an Aqueous Ammonium Ion Supercapacitor Evaluation of the Properties and Compositions of Blended Bio-jet Fuels Derived from Fast Pyrolysis Bio-oil made from Wood According to Aging Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1