传染病传播网络的贝叶斯估计

Jianing Xu, Huimin Hu, Gregory Ellison, Lili Yu, Christopher Whalen, Liang Liu
{"title":"传染病传播网络的贝叶斯估计","authors":"Jianing Xu, Huimin Hu, Gregory Ellison, Lili Yu, Christopher Whalen, Liang Liu","doi":"arxiv-2409.05245","DOIUrl":null,"url":null,"abstract":"Reconstructing transmission networks is essential for identifying key factors\nlike superspreaders and high-risk locations, which are critical for developing\neffective pandemic prevention strategies. In this study, we developed a\nBayesian framework that integrates genomic and temporal data to reconstruct\ntransmission networks for infectious diseases. The Bayesian transmission model\naccounts for the latent period and differentiates between symptom onset and\nactual infection time, enhancing the accuracy of transmission dynamics and\nepidemiological models. Additionally, the model allows for the transmission of\nmultiple pathogen lineages, reflecting the complexity of real-world\ntransmission events more accurately than models that assume a single lineage\ntransmission. Simulation results show that the Bayesian model reliably\nestimates both the model parameters and the transmission network. Moreover,\nhypothesis testing effectively identifies direct transmission events. This\napproach highlights the crucial role of genetic data in reconstructing\ntransmission networks and understanding the origins and transmission dynamics\nof infectious diseases.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian estimation of transmission networks for infectious diseases\",\"authors\":\"Jianing Xu, Huimin Hu, Gregory Ellison, Lili Yu, Christopher Whalen, Liang Liu\",\"doi\":\"arxiv-2409.05245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconstructing transmission networks is essential for identifying key factors\\nlike superspreaders and high-risk locations, which are critical for developing\\neffective pandemic prevention strategies. In this study, we developed a\\nBayesian framework that integrates genomic and temporal data to reconstruct\\ntransmission networks for infectious diseases. The Bayesian transmission model\\naccounts for the latent period and differentiates between symptom onset and\\nactual infection time, enhancing the accuracy of transmission dynamics and\\nepidemiological models. Additionally, the model allows for the transmission of\\nmultiple pathogen lineages, reflecting the complexity of real-world\\ntransmission events more accurately than models that assume a single lineage\\ntransmission. Simulation results show that the Bayesian model reliably\\nestimates both the model parameters and the transmission network. Moreover,\\nhypothesis testing effectively identifies direct transmission events. This\\napproach highlights the crucial role of genetic data in reconstructing\\ntransmission networks and understanding the origins and transmission dynamics\\nof infectious diseases.\",\"PeriodicalId\":501266,\"journal\":{\"name\":\"arXiv - QuanBio - Quantitative Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

重建传播网络对于确定超级传播者和高风险地点等关键因素至关重要,而这些因素对于制定有效的流行病预防策略至关重要。在这项研究中,我们开发了一个贝叶斯框架,它整合了基因组数据和时间数据来重建传染病的传播网络。贝叶斯传播模型考虑了潜伏期,并区分了症状出现时间和实际感染时间,从而提高了传播动力学和流行病学模型的准确性。此外,该模型允许多个病原体系的传播,比假设单系传播的模型更准确地反映了现实世界传播事件的复杂性。模拟结果表明,贝叶斯模型能可靠地估计模型参数和传播网络。此外,假设检验还能有效识别直接传输事件。这种方法凸显了基因数据在重建传播网络和了解传染病起源与传播动态方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian estimation of transmission networks for infectious diseases
Reconstructing transmission networks is essential for identifying key factors like superspreaders and high-risk locations, which are critical for developing effective pandemic prevention strategies. In this study, we developed a Bayesian framework that integrates genomic and temporal data to reconstruct transmission networks for infectious diseases. The Bayesian transmission model accounts for the latent period and differentiates between symptom onset and actual infection time, enhancing the accuracy of transmission dynamics and epidemiological models. Additionally, the model allows for the transmission of multiple pathogen lineages, reflecting the complexity of real-world transmission events more accurately than models that assume a single lineage transmission. Simulation results show that the Bayesian model reliably estimates both the model parameters and the transmission network. Moreover, hypothesis testing effectively identifies direct transmission events. This approach highlights the crucial role of genetic data in reconstructing transmission networks and understanding the origins and transmission dynamics of infectious diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1