在小规模数据集上高效训练用于分子性质预测的变换器

Shivesh Prakash
{"title":"在小规模数据集上高效训练用于分子性质预测的变换器","authors":"Shivesh Prakash","doi":"arxiv-2409.04909","DOIUrl":null,"url":null,"abstract":"The blood-brain barrier (BBB) serves as a protective barrier that separates\nthe brain from the circulatory system, regulating the passage of substances\ninto the central nervous system. Assessing the BBB permeability of potential\ndrugs is crucial for effective drug targeting. However, traditional\nexperimental methods for measuring BBB permeability are challenging and\nimpractical for large-scale screening. Consequently, there is a need to develop\ncomputational approaches to predict BBB permeability. This paper proposes a GPS\nTransformer architecture augmented with Self Attention, designed to perform\nwell in the low-data regime. The proposed approach achieved a state-of-the-art\nperformance on the BBB permeability prediction task using the BBBP dataset,\nsurpassing existing models. With a ROC-AUC of 78.8%, the approach sets a\nstate-of-the-art by 5.5%. We demonstrate that standard Self Attention coupled\nwith GPS transformer performs better than other variants of attention coupled\nwith GPS Transformer.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Training of Transformers for Molecule Property Prediction on Small-scale Datasets\",\"authors\":\"Shivesh Prakash\",\"doi\":\"arxiv-2409.04909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The blood-brain barrier (BBB) serves as a protective barrier that separates\\nthe brain from the circulatory system, regulating the passage of substances\\ninto the central nervous system. Assessing the BBB permeability of potential\\ndrugs is crucial for effective drug targeting. However, traditional\\nexperimental methods for measuring BBB permeability are challenging and\\nimpractical for large-scale screening. Consequently, there is a need to develop\\ncomputational approaches to predict BBB permeability. This paper proposes a GPS\\nTransformer architecture augmented with Self Attention, designed to perform\\nwell in the low-data regime. The proposed approach achieved a state-of-the-art\\nperformance on the BBB permeability prediction task using the BBBP dataset,\\nsurpassing existing models. With a ROC-AUC of 78.8%, the approach sets a\\nstate-of-the-art by 5.5%. We demonstrate that standard Self Attention coupled\\nwith GPS transformer performs better than other variants of attention coupled\\nwith GPS Transformer.\",\"PeriodicalId\":501266,\"journal\":{\"name\":\"arXiv - QuanBio - Quantitative Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

血脑屏障(BBB)是将大脑与循环系统分隔开来的一道保护屏障,可调节物质进入中枢神经系统的通道。评估潜在药物的血脑屏障通透性对于有效的药物靶向至关重要。然而,测量 BBB 通透性的传统实验方法对于大规模筛选来说具有挑战性且不切实际。因此,有必要开发预测 BBB 渗透性的计算方法。本文提出了一种利用自我关注(Self Attention)增强的全球定位系统转换器(GPSTransformer)架构,其设计目的是在低数据机制下实现良好的性能。所提出的方法在使用 BBBP 数据集进行 BBB 渗透性预测任务时取得了超越现有模型的最佳性能。该方法的 ROC-AUC 为 78.8%,比先进水平提高了 5.5%。我们证明,标准的 "自我注意力 "与 GPS 变换器相结合,比注意力与 GPS 变换器相结合的其他变体表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Training of Transformers for Molecule Property Prediction on Small-scale Datasets
The blood-brain barrier (BBB) serves as a protective barrier that separates the brain from the circulatory system, regulating the passage of substances into the central nervous system. Assessing the BBB permeability of potential drugs is crucial for effective drug targeting. However, traditional experimental methods for measuring BBB permeability are challenging and impractical for large-scale screening. Consequently, there is a need to develop computational approaches to predict BBB permeability. This paper proposes a GPS Transformer architecture augmented with Self Attention, designed to perform well in the low-data regime. The proposed approach achieved a state-of-the-art performance on the BBB permeability prediction task using the BBBP dataset, surpassing existing models. With a ROC-AUC of 78.8%, the approach sets a state-of-the-art by 5.5%. We demonstrate that standard Self Attention coupled with GPS transformer performs better than other variants of attention coupled with GPS Transformer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1