CRADLE-VAE:利用基于反事实推理的伪差解除增强单细胞基因扰动建模

Seungheun Baek, Soyon Park, Yan Ting Chok, Junhyun Lee, Jueon Park, Mogan Gim, Jaewoo Kang
{"title":"CRADLE-VAE:利用基于反事实推理的伪差解除增强单细胞基因扰动建模","authors":"Seungheun Baek, Soyon Park, Yan Ting Chok, Junhyun Lee, Jueon Park, Mogan Gim, Jaewoo Kang","doi":"arxiv-2409.05484","DOIUrl":null,"url":null,"abstract":"Predicting cellular responses to various perturbations is a critical focus in\ndrug discovery and personalized therapeutics, with deep learning models playing\na significant role in this endeavor. Single-cell datasets contain technical\nartifacts that may hinder the predictability of such models, which poses\nquality control issues highly regarded in this area. To address this, we\npropose CRADLE-VAE, a causal generative framework tailored for single-cell gene\nperturbation modeling, enhanced with counterfactual reasoning-based artifact\ndisentanglement. Throughout training, CRADLE-VAE models the underlying latent\ndistribution of technical artifacts and perturbation effects present in\nsingle-cell datasets. It employs counterfactual reasoning to effectively\ndisentangle such artifacts by modulating the latent basal spaces and learns\nrobust features for generating cellular response data with improved quality.\nExperimental results demonstrate that this approach improves not only treatment\neffect estimation performance but also generative quality as well. The\nCRADLE-VAE codebase is publicly available at\nhttps://github.com/dmis-lab/CRADLE-VAE.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRADLE-VAE: Enhancing Single-Cell Gene Perturbation Modeling with Counterfactual Reasoning-based Artifact Disentanglement\",\"authors\":\"Seungheun Baek, Soyon Park, Yan Ting Chok, Junhyun Lee, Jueon Park, Mogan Gim, Jaewoo Kang\",\"doi\":\"arxiv-2409.05484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting cellular responses to various perturbations is a critical focus in\\ndrug discovery and personalized therapeutics, with deep learning models playing\\na significant role in this endeavor. Single-cell datasets contain technical\\nartifacts that may hinder the predictability of such models, which poses\\nquality control issues highly regarded in this area. To address this, we\\npropose CRADLE-VAE, a causal generative framework tailored for single-cell gene\\nperturbation modeling, enhanced with counterfactual reasoning-based artifact\\ndisentanglement. Throughout training, CRADLE-VAE models the underlying latent\\ndistribution of technical artifacts and perturbation effects present in\\nsingle-cell datasets. It employs counterfactual reasoning to effectively\\ndisentangle such artifacts by modulating the latent basal spaces and learns\\nrobust features for generating cellular response data with improved quality.\\nExperimental results demonstrate that this approach improves not only treatment\\neffect estimation performance but also generative quality as well. The\\nCRADLE-VAE codebase is publicly available at\\nhttps://github.com/dmis-lab/CRADLE-VAE.\",\"PeriodicalId\":501266,\"journal\":{\"name\":\"arXiv - QuanBio - Quantitative Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预测细胞对各种扰动的反应是药物发现和个性化治疗的一个关键重点,深度学习模型在这方面发挥着重要作用。单细胞数据集包含的技术因素可能会阻碍此类模型的可预测性,这就带来了该领域备受关注的质量控制问题。为了解决这个问题,我们提出了 CRADLE-VAE,这是一个为单细胞基因扰动建模量身定制的因果生成框架,并通过基于反事实推理的人工制品解纠缠功能进行了增强。在整个训练过程中,CRADLE-VAE 对单细胞数据集中存在的技术假象和扰动效应的潜在分布进行建模。实验结果表明,这种方法不仅能提高治疗效果估计性能,还能提高生成质量。CRADLE-VAE代码库可在https://github.com/dmis-lab/CRADLE-VAE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CRADLE-VAE: Enhancing Single-Cell Gene Perturbation Modeling with Counterfactual Reasoning-based Artifact Disentanglement
Predicting cellular responses to various perturbations is a critical focus in drug discovery and personalized therapeutics, with deep learning models playing a significant role in this endeavor. Single-cell datasets contain technical artifacts that may hinder the predictability of such models, which poses quality control issues highly regarded in this area. To address this, we propose CRADLE-VAE, a causal generative framework tailored for single-cell gene perturbation modeling, enhanced with counterfactual reasoning-based artifact disentanglement. Throughout training, CRADLE-VAE models the underlying latent distribution of technical artifacts and perturbation effects present in single-cell datasets. It employs counterfactual reasoning to effectively disentangle such artifacts by modulating the latent basal spaces and learns robust features for generating cellular response data with improved quality. Experimental results demonstrate that this approach improves not only treatment effect estimation performance but also generative quality as well. The CRADLE-VAE codebase is publicly available at https://github.com/dmis-lab/CRADLE-VAE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1