人类视觉皮层中的通用无标度表征

Raj Magesh Gauthaman, Brice Ménard, Michael F. Bonner
{"title":"人类视觉皮层中的通用无标度表征","authors":"Raj Magesh Gauthaman, Brice Ménard, Michael F. Bonner","doi":"arxiv-2409.06843","DOIUrl":null,"url":null,"abstract":"How does the human visual cortex encode sensory information? To address this\nquestion, we explore the covariance structure of neural representations. We\nperform a cross-decomposition analysis of fMRI responses to natural images in\nmultiple individuals from the Natural Scenes Dataset and find that neural\nrepresentations systematically exhibit a power-law covariance spectrum over\nfour orders of magnitude in ranks. This scale-free structure is found in\nmultiple regions along the visual hierarchy, pointing to the existence of a\ngeneric encoding strategy in visual cortex. We also show that, up to a\nrotation, a large ensemble of principal axes of these population codes are\nshared across subjects, showing the existence of a universal high-dimensional\nrepresentation. This suggests a high level of convergence in how the human\nbrain learns to represent natural scenes despite individual differences in\nneuroanatomy and experience. We further demonstrate that a spectral approach is\ncritical for characterizing population codes in their full extent, and in doing\nso, we reveal a vast space of uncharted dimensions that have been out of reach\nfor conventional variance-weighted methods. A global view of neural\nrepresentations thus requires embracing their high-dimensional nature and\nunderstanding them statistically rather than through visual or semantic\ninterpretation of individual dimensions.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal scale-free representations in human visual cortex\",\"authors\":\"Raj Magesh Gauthaman, Brice Ménard, Michael F. Bonner\",\"doi\":\"arxiv-2409.06843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How does the human visual cortex encode sensory information? To address this\\nquestion, we explore the covariance structure of neural representations. We\\nperform a cross-decomposition analysis of fMRI responses to natural images in\\nmultiple individuals from the Natural Scenes Dataset and find that neural\\nrepresentations systematically exhibit a power-law covariance spectrum over\\nfour orders of magnitude in ranks. This scale-free structure is found in\\nmultiple regions along the visual hierarchy, pointing to the existence of a\\ngeneric encoding strategy in visual cortex. We also show that, up to a\\nrotation, a large ensemble of principal axes of these population codes are\\nshared across subjects, showing the existence of a universal high-dimensional\\nrepresentation. This suggests a high level of convergence in how the human\\nbrain learns to represent natural scenes despite individual differences in\\nneuroanatomy and experience. We further demonstrate that a spectral approach is\\ncritical for characterizing population codes in their full extent, and in doing\\nso, we reveal a vast space of uncharted dimensions that have been out of reach\\nfor conventional variance-weighted methods. A global view of neural\\nrepresentations thus requires embracing their high-dimensional nature and\\nunderstanding them statistically rather than through visual or semantic\\ninterpretation of individual dimensions.\",\"PeriodicalId\":501266,\"journal\":{\"name\":\"arXiv - QuanBio - Quantitative Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人类视觉皮层是如何编码感觉信息的?为了解决这个问题,我们探索了神经表征的协方差结构。我们对 "自然场景数据集 "中多个个体对自然图像的 fMRI 反应进行了交叉分解分析,发现神经表征系统地呈现出幂律协方差谱,其等级超过四个数量级。这种无标度结构出现在视觉层次结构的多个区域,表明视觉皮层中存在通用的编码策略。我们还发现,在旋转之前,这些群体编码的主轴在不同受试者之间存在大量的共享性,这表明存在一种通用的高维表征。这表明,尽管个体在神经解剖学和经验方面存在差异,但人类大脑在学习如何表现自然场景方面具有高度的趋同性。我们进一步证明,频谱方法对于全面描述群体代码至关重要,而且在此过程中,我们揭示了传统方差加权方法无法触及的未知维度的广阔空间。因此,要对神经表征进行全局观察,就必须接受其高维特性,并从统计学角度而不是通过对单个维度的视觉或语义解释来理解它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Universal scale-free representations in human visual cortex
How does the human visual cortex encode sensory information? To address this question, we explore the covariance structure of neural representations. We perform a cross-decomposition analysis of fMRI responses to natural images in multiple individuals from the Natural Scenes Dataset and find that neural representations systematically exhibit a power-law covariance spectrum over four orders of magnitude in ranks. This scale-free structure is found in multiple regions along the visual hierarchy, pointing to the existence of a generic encoding strategy in visual cortex. We also show that, up to a rotation, a large ensemble of principal axes of these population codes are shared across subjects, showing the existence of a universal high-dimensional representation. This suggests a high level of convergence in how the human brain learns to represent natural scenes despite individual differences in neuroanatomy and experience. We further demonstrate that a spectral approach is critical for characterizing population codes in their full extent, and in doing so, we reveal a vast space of uncharted dimensions that have been out of reach for conventional variance-weighted methods. A global view of neural representations thus requires embracing their high-dimensional nature and understanding them statistically rather than through visual or semantic interpretation of individual dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1