探索自闭症谱系障碍的神经功能相变模式:热力学参数分析方法

Dayu Qin, Yuzhe Chen, Ercan Engin Kuruoglu
{"title":"探索自闭症谱系障碍的神经功能相变模式:热力学参数分析方法","authors":"Dayu Qin, Yuzhe Chen, Ercan Engin Kuruoglu","doi":"arxiv-2409.01039","DOIUrl":null,"url":null,"abstract":"Designing network parameters that can effectively represent complex networks\nis of significant importance for the analysis of time-varying complex networks.\nThis paper introduces a novel thermodynamic framework for analyzing complex\nnetworks, focusing on Spectral Core Entropy (SCE), Node Energy, internal energy\nand temperature to measure structural changes in dynamic complex network. This\nframework provides a quantitative representation of network characteristics,\ncapturing time-varying structural changes. We apply this framework to study\nbrain activity in autism versus control subjects, illustrating its potential to\nidentify significant structural changes and brain state transitions. By\ntreating brain networks as thermodynamic systems, important parameters such as\nnode energy and temperature are derived to depict brain activities. Our\nresearch has found that in our designed framework the thermodynamic\nparameter-temperature, is significantly correlated with the transitions of\nbrain states. Statistical tests confirm the effectiveness of our approach.\nMoreover, our study demonstrates that node energy effectively captures the\nactivity levels of brain regions and reveals biologically proven differences\nbetween autism patients and controls, offering a powerful tool for exploring\nthe characteristics of complex networks in various applications.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Neurofunctional Phase Transition Patterns in Autism Spectrum Disorder: A Thermodynamics Parameters Analysis Approach\",\"authors\":\"Dayu Qin, Yuzhe Chen, Ercan Engin Kuruoglu\",\"doi\":\"arxiv-2409.01039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing network parameters that can effectively represent complex networks\\nis of significant importance for the analysis of time-varying complex networks.\\nThis paper introduces a novel thermodynamic framework for analyzing complex\\nnetworks, focusing on Spectral Core Entropy (SCE), Node Energy, internal energy\\nand temperature to measure structural changes in dynamic complex network. This\\nframework provides a quantitative representation of network characteristics,\\ncapturing time-varying structural changes. We apply this framework to study\\nbrain activity in autism versus control subjects, illustrating its potential to\\nidentify significant structural changes and brain state transitions. By\\ntreating brain networks as thermodynamic systems, important parameters such as\\nnode energy and temperature are derived to depict brain activities. Our\\nresearch has found that in our designed framework the thermodynamic\\nparameter-temperature, is significantly correlated with the transitions of\\nbrain states. Statistical tests confirm the effectiveness of our approach.\\nMoreover, our study demonstrates that node energy effectively captures the\\nactivity levels of brain regions and reveals biologically proven differences\\nbetween autism patients and controls, offering a powerful tool for exploring\\nthe characteristics of complex networks in various applications.\",\"PeriodicalId\":501266,\"journal\":{\"name\":\"arXiv - QuanBio - Quantitative Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种用于分析复杂网络的新型热力学框架,主要通过谱核熵 (SCE)、节点能量、内能和温度来测量动态复杂网络的结构变化。该框架提供了网络特征的定量表示,捕捉了随时间变化的结构变化。我们将这一框架应用于研究自闭症与对照组受试者的大脑活动,说明它在识别重大结构变化和大脑状态转换方面的潜力。通过将大脑网络视为热力学系统,我们得出了节点能量和温度等重要参数来描述大脑活动。我们的研究发现,在我们设计的框架中,热力学参数--温度与大脑状态的转换显著相关。此外,我们的研究还证明,节点能量能有效捕捉大脑区域的活动水平,并揭示自闭症患者与对照组之间的生物差异,为探索各种应用中复杂网络的特征提供了有力工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring Neurofunctional Phase Transition Patterns in Autism Spectrum Disorder: A Thermodynamics Parameters Analysis Approach
Designing network parameters that can effectively represent complex networks is of significant importance for the analysis of time-varying complex networks. This paper introduces a novel thermodynamic framework for analyzing complex networks, focusing on Spectral Core Entropy (SCE), Node Energy, internal energy and temperature to measure structural changes in dynamic complex network. This framework provides a quantitative representation of network characteristics, capturing time-varying structural changes. We apply this framework to study brain activity in autism versus control subjects, illustrating its potential to identify significant structural changes and brain state transitions. By treating brain networks as thermodynamic systems, important parameters such as node energy and temperature are derived to depict brain activities. Our research has found that in our designed framework the thermodynamic parameter-temperature, is significantly correlated with the transitions of brain states. Statistical tests confirm the effectiveness of our approach. Moreover, our study demonstrates that node energy effectively captures the activity levels of brain regions and reveals biologically proven differences between autism patients and controls, offering a powerful tool for exploring the characteristics of complex networks in various applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1