微尺度液-液相分离反应网络模型揭示空间维度的影响

Jinyoung Kim, Sean D. Lawley, Jinsu Kim
{"title":"微尺度液-液相分离反应网络模型揭示空间维度的影响","authors":"Jinyoung Kim, Sean D. Lawley, Jinsu Kim","doi":"arxiv-2408.15303","DOIUrl":null,"url":null,"abstract":"Proteins can form droplets via liquid-liquid phase separation (LLPS) in\ncells. Recent experiments demonstrate that LLPS is qualitatively different on\ntwo-dimensional (2d) surfaces compared to three-dimensional (3d) solutions. In\nthis paper, we use mathematical modeling to investigate the causes of the\ndiscrepancies between LLPS in 2d versus 3d. We model the number of proteins and\ndroplets inducing LLPS by continuous-time Markov chains and use chemical\nreaction network theory to analyze the model. To reflect the influence of space\ndimension, droplet formation and dissociation rates are determined using the\nfirst hitting times of diffusing proteins. We first show that our stochastic\nmodel reproduces the appropriate phase diagram and is consistent with the\nrelevant thermodynamic constraints. After further analyzing the model, we find\nthat it predicts that the space dimension induces qualitatively different\nfeatures of LLPS which are consistent with recent experiments. While it has\nbeen claimed that the differences between 2d and 3d LLPS stems mainly from\ndifferent diffusion coefficients, our analysis is independent of the diffusion\ncoefficients of the proteins since we use the stationary model behavior.\nTherefore, our results give new hypotheses about how space dimension affects\nLLPS.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A reaction network model of microscale liquid-liquid phase separation reveals effects of spatial dimension\",\"authors\":\"Jinyoung Kim, Sean D. Lawley, Jinsu Kim\",\"doi\":\"arxiv-2408.15303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proteins can form droplets via liquid-liquid phase separation (LLPS) in\\ncells. Recent experiments demonstrate that LLPS is qualitatively different on\\ntwo-dimensional (2d) surfaces compared to three-dimensional (3d) solutions. In\\nthis paper, we use mathematical modeling to investigate the causes of the\\ndiscrepancies between LLPS in 2d versus 3d. We model the number of proteins and\\ndroplets inducing LLPS by continuous-time Markov chains and use chemical\\nreaction network theory to analyze the model. To reflect the influence of space\\ndimension, droplet formation and dissociation rates are determined using the\\nfirst hitting times of diffusing proteins. We first show that our stochastic\\nmodel reproduces the appropriate phase diagram and is consistent with the\\nrelevant thermodynamic constraints. After further analyzing the model, we find\\nthat it predicts that the space dimension induces qualitatively different\\nfeatures of LLPS which are consistent with recent experiments. While it has\\nbeen claimed that the differences between 2d and 3d LLPS stems mainly from\\ndifferent diffusion coefficients, our analysis is independent of the diffusion\\ncoefficients of the proteins since we use the stationary model behavior.\\nTherefore, our results give new hypotheses about how space dimension affects\\nLLPS.\",\"PeriodicalId\":501266,\"journal\":{\"name\":\"arXiv - QuanBio - Quantitative Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质可通过液-液相分离(LLPS)作用形成液滴。最近的实验证明,二维(2d)表面上的 LLPS 与三维(3d)溶液上的 LLPS 有质的不同。在本文中,我们使用数学模型来研究二维与三维 LLPS 之间差异的原因。我们通过连续时间马尔可夫链对诱导 LLPS 的蛋白质和液滴数量进行建模,并利用化学反应网络理论对模型进行分析。为了反映空间维度的影响,液滴的形成和解离速率是通过扩散蛋白质的首次撞击时间来确定的。我们首先证明了我们的随机模型再现了适当的相图,并且与相关的热力学约束相一致。在进一步分析该模型后,我们发现该模型预测空间维度会诱发 LLPS 质量上的不同特征,这与最近的实验是一致的。虽然有人认为 2d 和 3d LLPS 的差异主要源于不同的扩散系数,但我们的分析与蛋白质的扩散系数无关,因为我们使用的是静态模型行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A reaction network model of microscale liquid-liquid phase separation reveals effects of spatial dimension
Proteins can form droplets via liquid-liquid phase separation (LLPS) in cells. Recent experiments demonstrate that LLPS is qualitatively different on two-dimensional (2d) surfaces compared to three-dimensional (3d) solutions. In this paper, we use mathematical modeling to investigate the causes of the discrepancies between LLPS in 2d versus 3d. We model the number of proteins and droplets inducing LLPS by continuous-time Markov chains and use chemical reaction network theory to analyze the model. To reflect the influence of space dimension, droplet formation and dissociation rates are determined using the first hitting times of diffusing proteins. We first show that our stochastic model reproduces the appropriate phase diagram and is consistent with the relevant thermodynamic constraints. After further analyzing the model, we find that it predicts that the space dimension induces qualitatively different features of LLPS which are consistent with recent experiments. While it has been claimed that the differences between 2d and 3d LLPS stems mainly from different diffusion coefficients, our analysis is independent of the diffusion coefficients of the proteins since we use the stationary model behavior. Therefore, our results give new hypotheses about how space dimension affects LLPS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1