药物代理:基于大语言模型推理的可解释药物再利用代理

Yoshitaka Inoue, Tianci Song, Tianfan Fu
{"title":"药物代理:基于大语言模型推理的可解释药物再利用代理","authors":"Yoshitaka Inoue, Tianci Song, Tianfan Fu","doi":"arxiv-2408.13378","DOIUrl":null,"url":null,"abstract":"Drug repurposing offers a promising avenue for accelerating drug development\nby identifying new therapeutic potentials of existing drugs. In this paper, we\npropose a multi-agent framework to enhance the drug repurposing process using\nstate-of-the-art machine learning techniques and knowledge integration. Our\nframework comprises several specialized agents: an AI Agent trains robust\ndrug-target interaction (DTI) models; a Knowledge Graph Agent utilizes the\ndrug-gene interaction database (DGIdb), DrugBank, Comparative Toxicogenomics\nDatabase (CTD), and Search Tool for Interactions of Chemicals (STITCH) to\nsystematically extract DTIs; and a Search Agent interacts with biomedical\nliterature to annotate and verify computational predictions. By integrating\noutputs from these agents, our system effectively harnesses diverse data\nsources, including external databases, to propose viable repurposing\ncandidates. Preliminary results demonstrate the potential of our approach in\nnot only predicting drug-disease interactions but also in reducing the time and\ncost associated with traditional drug discovery methods. This paper highlights\nthe scalability of multi-agent systems in biomedical research and their role in\ndriving innovation in drug repurposing. Our approach not only outperforms\nexisting methods in predicting drug repurposing potential but also provides\ninterpretable results, paving the way for more efficient and cost-effective\ndrug discovery processes.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DrugAgent: Explainable Drug Repurposing Agent with Large Language Model-based Reasoning\",\"authors\":\"Yoshitaka Inoue, Tianci Song, Tianfan Fu\",\"doi\":\"arxiv-2408.13378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drug repurposing offers a promising avenue for accelerating drug development\\nby identifying new therapeutic potentials of existing drugs. In this paper, we\\npropose a multi-agent framework to enhance the drug repurposing process using\\nstate-of-the-art machine learning techniques and knowledge integration. Our\\nframework comprises several specialized agents: an AI Agent trains robust\\ndrug-target interaction (DTI) models; a Knowledge Graph Agent utilizes the\\ndrug-gene interaction database (DGIdb), DrugBank, Comparative Toxicogenomics\\nDatabase (CTD), and Search Tool for Interactions of Chemicals (STITCH) to\\nsystematically extract DTIs; and a Search Agent interacts with biomedical\\nliterature to annotate and verify computational predictions. By integrating\\noutputs from these agents, our system effectively harnesses diverse data\\nsources, including external databases, to propose viable repurposing\\ncandidates. Preliminary results demonstrate the potential of our approach in\\nnot only predicting drug-disease interactions but also in reducing the time and\\ncost associated with traditional drug discovery methods. This paper highlights\\nthe scalability of multi-agent systems in biomedical research and their role in\\ndriving innovation in drug repurposing. Our approach not only outperforms\\nexisting methods in predicting drug repurposing potential but also provides\\ninterpretable results, paving the way for more efficient and cost-effective\\ndrug discovery processes.\",\"PeriodicalId\":501266,\"journal\":{\"name\":\"arXiv - QuanBio - Quantitative Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过识别现有药物的新治疗潜力,药物再利用为加速药物开发提供了一条大有可为的途径。在本文中,我们提出了一个多代理框架,利用最先进的机器学习技术和知识集成来增强药物再利用过程。我们的框架由几个专门的代理组成:人工智能代理训练稳健的药物-靶点相互作用(DTI)模型;知识图谱代理利用药物-基因相互作用数据库(DGIdb)、药物数据库(DrugBank)、比较毒物基因组学数据库(CTD)和化学品相互作用搜索工具(STITCH)系统地提取DTI;搜索代理与生物医学文献互动,注释和验证计算预测。通过整合这些代理的输出,我们的系统有效地利用了包括外部数据库在内的各种数据源,提出了可行的再利用候选方案。初步结果表明,我们的方法不仅在预测药物与疾病的相互作用方面具有潜力,而且在减少与传统药物发现方法相关的时间和成本方面也具有潜力。本文强调了多代理系统在生物医学研究中的可扩展性及其在推动药物再利用创新方面的作用。我们的方法不仅在预测药物再利用潜力方面优于现有方法,还能提供可解释的结果,为更高效、更具成本效益的药物发现过程铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DrugAgent: Explainable Drug Repurposing Agent with Large Language Model-based Reasoning
Drug repurposing offers a promising avenue for accelerating drug development by identifying new therapeutic potentials of existing drugs. In this paper, we propose a multi-agent framework to enhance the drug repurposing process using state-of-the-art machine learning techniques and knowledge integration. Our framework comprises several specialized agents: an AI Agent trains robust drug-target interaction (DTI) models; a Knowledge Graph Agent utilizes the drug-gene interaction database (DGIdb), DrugBank, Comparative Toxicogenomics Database (CTD), and Search Tool for Interactions of Chemicals (STITCH) to systematically extract DTIs; and a Search Agent interacts with biomedical literature to annotate and verify computational predictions. By integrating outputs from these agents, our system effectively harnesses diverse data sources, including external databases, to propose viable repurposing candidates. Preliminary results demonstrate the potential of our approach in not only predicting drug-disease interactions but also in reducing the time and cost associated with traditional drug discovery methods. This paper highlights the scalability of multi-agent systems in biomedical research and their role in driving innovation in drug repurposing. Our approach not only outperforms existing methods in predicting drug repurposing potential but also provides interpretable results, paving the way for more efficient and cost-effective drug discovery processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1