生成二进制物种分布图

Filip Dorm, Christian Lange, Scott Loarie, Oisin Mac Aodha
{"title":"生成二进制物种分布图","authors":"Filip Dorm, Christian Lange, Scott Loarie, Oisin Mac Aodha","doi":"arxiv-2408.15956","DOIUrl":null,"url":null,"abstract":"Accurately predicting the geographic ranges of species is crucial for\nassisting conservation efforts. Traditionally, range maps were manually created\nby experts. However, species distribution models (SDMs) and, more recently,\ndeep learning-based variants offer a potential automated alternative. Deep\nlearning-based SDMs generate a continuous probability representing the\npredicted presence of a species at a given location, which must be binarized by\nsetting per-species thresholds to obtain binary range maps. However, selecting\nappropriate per-species thresholds to binarize these predictions is non-trivial\nas different species can require distinct thresholds. In this work, we evaluate\ndifferent approaches for automatically identifying the best thresholds for\nbinarizing range maps using presence-only data. This includes approaches that\nrequire the generation of additional pseudo-absence data, along with ones that\nonly require presence data. We also propose an extension of an existing\npresence-only technique that is more robust to outliers. We perform a detailed\nevaluation of different thresholding techniques on the tasks of binary range\nestimation and large-scale fine-grained visual classification, and we\ndemonstrate improved performance over existing pseudo-absence free approaches\nusing our method.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating Binary Species Range Maps\",\"authors\":\"Filip Dorm, Christian Lange, Scott Loarie, Oisin Mac Aodha\",\"doi\":\"arxiv-2408.15956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately predicting the geographic ranges of species is crucial for\\nassisting conservation efforts. Traditionally, range maps were manually created\\nby experts. However, species distribution models (SDMs) and, more recently,\\ndeep learning-based variants offer a potential automated alternative. Deep\\nlearning-based SDMs generate a continuous probability representing the\\npredicted presence of a species at a given location, which must be binarized by\\nsetting per-species thresholds to obtain binary range maps. However, selecting\\nappropriate per-species thresholds to binarize these predictions is non-trivial\\nas different species can require distinct thresholds. In this work, we evaluate\\ndifferent approaches for automatically identifying the best thresholds for\\nbinarizing range maps using presence-only data. This includes approaches that\\nrequire the generation of additional pseudo-absence data, along with ones that\\nonly require presence data. We also propose an extension of an existing\\npresence-only technique that is more robust to outliers. We perform a detailed\\nevaluation of different thresholding techniques on the tasks of binary range\\nestimation and large-scale fine-grained visual classification, and we\\ndemonstrate improved performance over existing pseudo-absence free approaches\\nusing our method.\",\"PeriodicalId\":501266,\"journal\":{\"name\":\"arXiv - QuanBio - Quantitative Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确预测物种的地理分布范围对于协助物种保护工作至关重要。传统上,物种分布图是由专家手动绘制的。然而,物种分布模型(SDM)以及最近基于深度学习的变体提供了一种潜在的自动化替代方法。基于深度学习的物种分布模型会生成一个连续概率,代表一个物种在给定地点的预测存在概率,必须通过设置每个物种的阈值对其进行二值化处理,以获得二值分布图。然而,选择适当的物种阈值来对这些预测进行二值化并非易事,因为不同的物种可能需要不同的阈值。在这项工作中,我们对不同的方法进行了评估,以自动识别最佳阈值,从而使用纯存在数据对范围图进行二值化。其中包括需要生成额外伪存在数据的方法,以及只需要存在数据的方法。我们还提出了对现有纯存在技术的一种扩展,这种技术对异常值更有鲁棒性。我们在二进制范围估计和大规模细粒度视觉分类任务中对不同的阈值技术进行了详细评估,并利用我们的方法展示了比现有无伪存在方法更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generating Binary Species Range Maps
Accurately predicting the geographic ranges of species is crucial for assisting conservation efforts. Traditionally, range maps were manually created by experts. However, species distribution models (SDMs) and, more recently, deep learning-based variants offer a potential automated alternative. Deep learning-based SDMs generate a continuous probability representing the predicted presence of a species at a given location, which must be binarized by setting per-species thresholds to obtain binary range maps. However, selecting appropriate per-species thresholds to binarize these predictions is non-trivial as different species can require distinct thresholds. In this work, we evaluate different approaches for automatically identifying the best thresholds for binarizing range maps using presence-only data. This includes approaches that require the generation of additional pseudo-absence data, along with ones that only require presence data. We also propose an extension of an existing presence-only technique that is more robust to outliers. We perform a detailed evaluation of different thresholding techniques on the tasks of binary range estimation and large-scale fine-grained visual classification, and we demonstrate improved performance over existing pseudo-absence free approaches using our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1