{"title":"基于卷积神经网络和海平面气压前兆的印度洋偶极子(IOD)预报","authors":"Yuqi Tao, Chunhua Qiu, Dongxiao Wang, Mingting Li, Guangli Zhang","doi":"10.1088/1748-9326/ad7522","DOIUrl":null,"url":null,"abstract":"Forecasting the Indian Ocean Dipole (IOD) is crucial because of its significant impact on regional and global climates. While traditional dynamic and empirical models suffer from systematic errors due to nonlinear processes, convolutional neural networks (CNN) are nonlinear in nature and have demonstrated remarkable El Niño Southern Oscillation (ENSO) and IOD forecasting skills based on oceanic predictors, particularly sea surface temperature and heat content. However, it is difficult to measure heat content and easily introduces uncertainties, prompting the need to explore atmospheric predictors for IOD forecasts. Based on sensitivity prediction experiments, we identified the sea level pressure (SLP) signal as a crucial predictor, which forecasts IOD at a 7 month lead. In addition, the CNN model improves monthly forecasting accuracy while reducing errors by 13.43%. Utilizing the heatmap analysis, we elucidated that the multi-seasonal predictability of the IOD primarily originates from mid-latitude climate variability. Besides ENSO signals in the Pacific Ocean, our study highlights the significant impact of remote climate forcing in the South Indian Ocean, tropical North Indian Ocean, and Northwest Pacific Ocean on IOD forecasts. By introducing the SLP precursor and extratropical zones into IOD forecasts, our study offers fresh insights into the underlying dynamics of IOD evolution.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"09 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indian Ocean Dipole (IOD) forecasts based on convolutional neural network with sea level pressure precursor\",\"authors\":\"Yuqi Tao, Chunhua Qiu, Dongxiao Wang, Mingting Li, Guangli Zhang\",\"doi\":\"10.1088/1748-9326/ad7522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forecasting the Indian Ocean Dipole (IOD) is crucial because of its significant impact on regional and global climates. While traditional dynamic and empirical models suffer from systematic errors due to nonlinear processes, convolutional neural networks (CNN) are nonlinear in nature and have demonstrated remarkable El Niño Southern Oscillation (ENSO) and IOD forecasting skills based on oceanic predictors, particularly sea surface temperature and heat content. However, it is difficult to measure heat content and easily introduces uncertainties, prompting the need to explore atmospheric predictors for IOD forecasts. Based on sensitivity prediction experiments, we identified the sea level pressure (SLP) signal as a crucial predictor, which forecasts IOD at a 7 month lead. In addition, the CNN model improves monthly forecasting accuracy while reducing errors by 13.43%. Utilizing the heatmap analysis, we elucidated that the multi-seasonal predictability of the IOD primarily originates from mid-latitude climate variability. Besides ENSO signals in the Pacific Ocean, our study highlights the significant impact of remote climate forcing in the South Indian Ocean, tropical North Indian Ocean, and Northwest Pacific Ocean on IOD forecasts. By introducing the SLP precursor and extratropical zones into IOD forecasts, our study offers fresh insights into the underlying dynamics of IOD evolution.\",\"PeriodicalId\":11747,\"journal\":{\"name\":\"Environmental Research Letters\",\"volume\":\"09 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-9326/ad7522\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/1748-9326/ad7522","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Indian Ocean Dipole (IOD) forecasts based on convolutional neural network with sea level pressure precursor
Forecasting the Indian Ocean Dipole (IOD) is crucial because of its significant impact on regional and global climates. While traditional dynamic and empirical models suffer from systematic errors due to nonlinear processes, convolutional neural networks (CNN) are nonlinear in nature and have demonstrated remarkable El Niño Southern Oscillation (ENSO) and IOD forecasting skills based on oceanic predictors, particularly sea surface temperature and heat content. However, it is difficult to measure heat content and easily introduces uncertainties, prompting the need to explore atmospheric predictors for IOD forecasts. Based on sensitivity prediction experiments, we identified the sea level pressure (SLP) signal as a crucial predictor, which forecasts IOD at a 7 month lead. In addition, the CNN model improves monthly forecasting accuracy while reducing errors by 13.43%. Utilizing the heatmap analysis, we elucidated that the multi-seasonal predictability of the IOD primarily originates from mid-latitude climate variability. Besides ENSO signals in the Pacific Ocean, our study highlights the significant impact of remote climate forcing in the South Indian Ocean, tropical North Indian Ocean, and Northwest Pacific Ocean on IOD forecasts. By introducing the SLP precursor and extratropical zones into IOD forecasts, our study offers fresh insights into the underlying dynamics of IOD evolution.
期刊介绍:
Environmental Research Letters (ERL) is a high-impact, open-access journal intended to be the meeting place of the research and policy communities concerned with environmental change and management.
The journal''s coverage reflects the increasingly interdisciplinary nature of environmental science, recognizing the wide-ranging contributions to the development of methods, tools and evaluation strategies relevant to the field. Submissions from across all components of the Earth system, i.e. land, atmosphere, cryosphere, biosphere and hydrosphere, and exchanges between these components are welcome.