自 1979 年以来冬季北极-中纬度联系中阶段性演变的主要特征

IF 5.8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Research Letters Pub Date : 2024-09-06 DOI:10.1088/1748-9326/ad7476
Yuxin Wang, Bingyi Wu
{"title":"自 1979 年以来冬季北极-中纬度联系中阶段性演变的主要特征","authors":"Yuxin Wang, Bingyi Wu","doi":"10.1088/1748-9326/ad7476","DOIUrl":null,"url":null,"abstract":"Over the past decades, the Arctic-midlatitude linkage has been extensively explored. Recent studies have suggested that the characteristics of phasic evolutions in the relationship between the Arctic warming and midlatitudes remain elusive. Therefore, this study systematically investigates this issue by using running empirical orthogonal function and moving correlation, and the results show a phasic alternation process in the relationship between the tropospheric thickness over the Barents–Kara Seas (BKS) and East Asian temperature, characterized by a phasic weak (P1: 1979–2000)–strong (P2: 2001–2011)–weak (P3: 2012–2021) connection. Our results highlight that since the winter of 2010, despite the Arctic sea ice being in an exceptionally reduced phase and continuous Arctic warming, the Arctic-midlatitude connection has not exhibited sustained strengthening relative to P2 phase. Moreover, it is found that changes of the connection between the BKS warming and the East Asian winter Monsoon may contribute to this phasic evolution, and the Arctic Oscillation plays an important role in modulating their phasic evolutions. The conclusions of this study help to deepen our understanding of the evolution of the strength and weakness of the relationship between Arctic warming and climate variations in midlatitudes.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"9 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dominant features of phasic evolutions in the winter Arctic-midlatitude linkage since 1979\",\"authors\":\"Yuxin Wang, Bingyi Wu\",\"doi\":\"10.1088/1748-9326/ad7476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past decades, the Arctic-midlatitude linkage has been extensively explored. Recent studies have suggested that the characteristics of phasic evolutions in the relationship between the Arctic warming and midlatitudes remain elusive. Therefore, this study systematically investigates this issue by using running empirical orthogonal function and moving correlation, and the results show a phasic alternation process in the relationship between the tropospheric thickness over the Barents–Kara Seas (BKS) and East Asian temperature, characterized by a phasic weak (P1: 1979–2000)–strong (P2: 2001–2011)–weak (P3: 2012–2021) connection. Our results highlight that since the winter of 2010, despite the Arctic sea ice being in an exceptionally reduced phase and continuous Arctic warming, the Arctic-midlatitude connection has not exhibited sustained strengthening relative to P2 phase. Moreover, it is found that changes of the connection between the BKS warming and the East Asian winter Monsoon may contribute to this phasic evolution, and the Arctic Oscillation plays an important role in modulating their phasic evolutions. The conclusions of this study help to deepen our understanding of the evolution of the strength and weakness of the relationship between Arctic warming and climate variations in midlatitudes.\",\"PeriodicalId\":11747,\"journal\":{\"name\":\"Environmental Research Letters\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-9326/ad7476\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/1748-9326/ad7476","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,人们对北极与中纬度之间的联系进行了广泛的探索。最近的研究表明,北极变暖与中纬度关系的阶段性演变特征仍然难以捉摸。因此,本研究利用运行经验正交函数和移动相关性对这一问题进行了系统研究,结果表明巴伦支海-卡拉海(BKS)上空对流层厚度与东亚气温之间的关系存在一个阶段性交替过程,其特点是阶段性弱(P1:1979-2000年)-强(P2:2001-2011年)-弱(P3:2012-2021年)联系。我们的研究结果突出表明,自 2010 年冬季以来,尽管北极海冰处于异常减少阶段,北极持续变暖,但北极与中纬度的联系相对于 P2 阶段并未表现出持续增强。此外,研究还发现,BKS 变暖和东亚冬季季候风之间联系的变化可能是这种阶段性演变的原因,而北极涛动在调节它们的阶段性演变中起着重要作用。本研究的结论有助于加深我们对北极变暖与中纬度气候变迁之间关系的强弱演变的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dominant features of phasic evolutions in the winter Arctic-midlatitude linkage since 1979
Over the past decades, the Arctic-midlatitude linkage has been extensively explored. Recent studies have suggested that the characteristics of phasic evolutions in the relationship between the Arctic warming and midlatitudes remain elusive. Therefore, this study systematically investigates this issue by using running empirical orthogonal function and moving correlation, and the results show a phasic alternation process in the relationship between the tropospheric thickness over the Barents–Kara Seas (BKS) and East Asian temperature, characterized by a phasic weak (P1: 1979–2000)–strong (P2: 2001–2011)–weak (P3: 2012–2021) connection. Our results highlight that since the winter of 2010, despite the Arctic sea ice being in an exceptionally reduced phase and continuous Arctic warming, the Arctic-midlatitude connection has not exhibited sustained strengthening relative to P2 phase. Moreover, it is found that changes of the connection between the BKS warming and the East Asian winter Monsoon may contribute to this phasic evolution, and the Arctic Oscillation plays an important role in modulating their phasic evolutions. The conclusions of this study help to deepen our understanding of the evolution of the strength and weakness of the relationship between Arctic warming and climate variations in midlatitudes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Research Letters
Environmental Research Letters 环境科学-环境科学
CiteScore
11.90
自引率
4.50%
发文量
763
审稿时长
4.3 months
期刊介绍: Environmental Research Letters (ERL) is a high-impact, open-access journal intended to be the meeting place of the research and policy communities concerned with environmental change and management. The journal''s coverage reflects the increasingly interdisciplinary nature of environmental science, recognizing the wide-ranging contributions to the development of methods, tools and evaluation strategies relevant to the field. Submissions from across all components of the Earth system, i.e. land, atmosphere, cryosphere, biosphere and hydrosphere, and exchanges between these components are welcome.
期刊最新文献
Interactive effects between extreme temperatures and PM2.5 on cause-specific mortality in thirteen U.S. states. Health benefits of decarbonization and clean air policies in Beijing and China. Impact of COVID-19 pandemic on greenhouse gas and criteria air pollutant emissions from the San Pedro Bay Ports and future policy implications. Shifting power: data democracy in engineering solutions. Central America’s agro-ecological suitability for cultivating coca, Erythroxylum spp
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1