减轻极端天气对作物产量的影响:荷兰农场管理战略的启示

IF 5.8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Research Letters Pub Date : 2024-09-06 DOI:10.1088/1748-9326/ad7308
S van der Veer, R Hamed, H Karabiyik, J L Roskam
{"title":"减轻极端天气对作物产量的影响:荷兰农场管理战略的启示","authors":"S van der Veer, R Hamed, H Karabiyik, J L Roskam","doi":"10.1088/1748-9326/ad7308","DOIUrl":null,"url":null,"abstract":"Weather extremes can drive substantial crop losses. Farm-level management strategies play a critical role in mitigating the impacts of and consequences for farmer livelihoods and food security. While the impacts of extreme weather on crop yields are well documented in recent studies, these predominantly focused on expansive geographical scales and commonly overlooked the critical role of management practices in modulating the dynamics of weather-crop sensitivities. We fill this gap in the literature by using a unique dataset that explores the timely relationship between extreme weather and crop yields at farm level in the Netherlands. We cover 10 types of crops and elucidate the role of soil types, irrigation and nutrient application in modulating the relationship between extreme weather and crops, by estimating fixed-effects regression models. We show substantial impacts from drought during the growing- and harvesting period and excessive precipitation during the planting- and growing period. Severe droughts show significant (<inline-formula>\n<tex-math><?CDATA $p\\unicode{x2A7D}0.05$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>p</mml:mi><mml:mtext>⩽</mml:mtext><mml:mn>0.05</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"erlad7308ieqn1.gif\"></inline-graphic></inline-formula>) reductions in yield for all crops, and lead to yield reductions up to 24 percent relative to average yields during the growing period. Meanwhile, eight crops show significant reductions in yield due to severe water excess during the planting period, with yield reductions up to 18 percent. Soils such as sand or loess amplify the negative impact of drought on crop yield, while softening the impact of excessive precipitation. Irrigation and to a lesser extent nutrient application are shown to moderately decrease the impact of extreme weather on crop yield. Our findings contribute valuable insights to guide local adaptation priorities which are critical given the projected increase in the intensity and frequency of extreme weather under climate change.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"24 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating the effects of extreme weather on crop yields: insights from farm management strategies in the Netherlands\",\"authors\":\"S van der Veer, R Hamed, H Karabiyik, J L Roskam\",\"doi\":\"10.1088/1748-9326/ad7308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weather extremes can drive substantial crop losses. Farm-level management strategies play a critical role in mitigating the impacts of and consequences for farmer livelihoods and food security. While the impacts of extreme weather on crop yields are well documented in recent studies, these predominantly focused on expansive geographical scales and commonly overlooked the critical role of management practices in modulating the dynamics of weather-crop sensitivities. We fill this gap in the literature by using a unique dataset that explores the timely relationship between extreme weather and crop yields at farm level in the Netherlands. We cover 10 types of crops and elucidate the role of soil types, irrigation and nutrient application in modulating the relationship between extreme weather and crops, by estimating fixed-effects regression models. We show substantial impacts from drought during the growing- and harvesting period and excessive precipitation during the planting- and growing period. Severe droughts show significant (<inline-formula>\\n<tex-math><?CDATA $p\\\\unicode{x2A7D}0.05$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>p</mml:mi><mml:mtext>⩽</mml:mtext><mml:mn>0.05</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\\\"erlad7308ieqn1.gif\\\"></inline-graphic></inline-formula>) reductions in yield for all crops, and lead to yield reductions up to 24 percent relative to average yields during the growing period. Meanwhile, eight crops show significant reductions in yield due to severe water excess during the planting period, with yield reductions up to 18 percent. Soils such as sand or loess amplify the negative impact of drought on crop yield, while softening the impact of excessive precipitation. Irrigation and to a lesser extent nutrient application are shown to moderately decrease the impact of extreme weather on crop yield. Our findings contribute valuable insights to guide local adaptation priorities which are critical given the projected increase in the intensity and frequency of extreme weather under climate change.\",\"PeriodicalId\":11747,\"journal\":{\"name\":\"Environmental Research Letters\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-9326/ad7308\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/1748-9326/ad7308","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

极端天气会造成巨大的作物损失。农场一级的管理策略在减轻极端天气对农民生计和粮食安全的影响和后果方面发挥着至关重要的作用。虽然极端天气对农作物产量的影响在近期的研究中得到了充分的记录,但这些研究主要集中在广阔的地理范围内,通常忽略了管理实践在调节天气-农作物敏感性动态中的关键作用。我们利用一个独特的数据集,探讨了荷兰农场层面极端天气与作物产量之间的及时关系,从而填补了这一文献空白。我们研究了 10 种作物,并通过估算固定效应回归模型,阐明了土壤类型、灌溉和养分施用在调节极端天气与作物之间关系中的作用。我们发现,生长期和收获期的干旱以及播种期和生长期的过量降水会产生巨大影响。严重干旱导致所有作物的产量显著下降(p⩽0.05),相对于生长期的平均产量,减产幅度高达 24%。同时,有八种作物在播种期因水分严重过剩而显著减产,减产幅度高达 18%。沙土或黄土等土壤加剧了干旱对作物产量的负面影响,同时减轻了过量降水的影响。灌溉以及在较小程度上施用养分可适度降低极端天气对作物产量的影响。我们的研究结果为指导地方适应优先事项提供了宝贵的见解,鉴于在气候变化下极端天气的强度和频率预计会增加,这一点至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mitigating the effects of extreme weather on crop yields: insights from farm management strategies in the Netherlands
Weather extremes can drive substantial crop losses. Farm-level management strategies play a critical role in mitigating the impacts of and consequences for farmer livelihoods and food security. While the impacts of extreme weather on crop yields are well documented in recent studies, these predominantly focused on expansive geographical scales and commonly overlooked the critical role of management practices in modulating the dynamics of weather-crop sensitivities. We fill this gap in the literature by using a unique dataset that explores the timely relationship between extreme weather and crop yields at farm level in the Netherlands. We cover 10 types of crops and elucidate the role of soil types, irrigation and nutrient application in modulating the relationship between extreme weather and crops, by estimating fixed-effects regression models. We show substantial impacts from drought during the growing- and harvesting period and excessive precipitation during the planting- and growing period. Severe droughts show significant ( p0.05) reductions in yield for all crops, and lead to yield reductions up to 24 percent relative to average yields during the growing period. Meanwhile, eight crops show significant reductions in yield due to severe water excess during the planting period, with yield reductions up to 18 percent. Soils such as sand or loess amplify the negative impact of drought on crop yield, while softening the impact of excessive precipitation. Irrigation and to a lesser extent nutrient application are shown to moderately decrease the impact of extreme weather on crop yield. Our findings contribute valuable insights to guide local adaptation priorities which are critical given the projected increase in the intensity and frequency of extreme weather under climate change.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Research Letters
Environmental Research Letters 环境科学-环境科学
CiteScore
11.90
自引率
4.50%
发文量
763
审稿时长
4.3 months
期刊介绍: Environmental Research Letters (ERL) is a high-impact, open-access journal intended to be the meeting place of the research and policy communities concerned with environmental change and management. The journal''s coverage reflects the increasingly interdisciplinary nature of environmental science, recognizing the wide-ranging contributions to the development of methods, tools and evaluation strategies relevant to the field. Submissions from across all components of the Earth system, i.e. land, atmosphere, cryosphere, biosphere and hydrosphere, and exchanges between these components are welcome.
期刊最新文献
Interactive effects between extreme temperatures and PM2.5 on cause-specific mortality in thirteen U.S. states. Health benefits of decarbonization and clean air policies in Beijing and China. Impact of COVID-19 pandemic on greenhouse gas and criteria air pollutant emissions from the San Pedro Bay Ports and future policy implications. Shifting power: data democracy in engineering solutions. Central America’s agro-ecological suitability for cultivating coca, Erythroxylum spp
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1