Kun Gao, Guiqi Liu, Sung-Tae Hong, Soumyabrata Basak
{"title":"摩擦搅拌加工的微观结构变化对薄铝板包层与芯材界面强度的影响","authors":"Kun Gao, Guiqi Liu, Sung-Tae Hong, Soumyabrata Basak","doi":"10.1007/s12540-024-01776-9","DOIUrl":null,"url":null,"abstract":"<p>The present study successfully utilizes friction stir processing (FSP) as a surface engineering tool on an AA4343-clad AA3003 sheet to improve the interfacial strength through microstructural homogenization. Compared to the base material condition, electron back-scattered diffraction analysis after FSP reveals a considerable reduction in grain morphological disparity between the clad layer and the core due to the occurrence of grain refinement by continuous dynamic recrystallization. Scanning electron microscopy (SEM) analysis reveals various Si-induced precipitations, including Al (Mn, Fe) Si, within the stir zone due to the diffusion of Si from the clad layer to the core during FSP. The influence of microstructural changes on improving the mechanical properties of the bi-layer clad sheet is also examined. The surface microhardness values of the clad (~ 28.7 Hv) and core (~ 35.5 Hv) for the base material condition are found to be improved to ~ 34.7 Hv and 38.5 Hv, respectively, after FSP. Besides, the overall strength of the FSPed clad sheet increases by ~ 45% compared to the base material conditions. The microstructural homogenization and Si-induced precipitates act together to strengthen the interface in the clad material system. SEM images on the fractured surfaces of the tensile specimens reveal delamination between the AA4343 (clad layer) and AA3003 (core) for the base material condition, which disappears after FSP.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"59 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Microstructural Changes by Friction Stir Processing on the Clad-to-Core Interfacial Strength of Thin Aluminum-Clad Aluminum Sheets\",\"authors\":\"Kun Gao, Guiqi Liu, Sung-Tae Hong, Soumyabrata Basak\",\"doi\":\"10.1007/s12540-024-01776-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present study successfully utilizes friction stir processing (FSP) as a surface engineering tool on an AA4343-clad AA3003 sheet to improve the interfacial strength through microstructural homogenization. Compared to the base material condition, electron back-scattered diffraction analysis after FSP reveals a considerable reduction in grain morphological disparity between the clad layer and the core due to the occurrence of grain refinement by continuous dynamic recrystallization. Scanning electron microscopy (SEM) analysis reveals various Si-induced precipitations, including Al (Mn, Fe) Si, within the stir zone due to the diffusion of Si from the clad layer to the core during FSP. The influence of microstructural changes on improving the mechanical properties of the bi-layer clad sheet is also examined. The surface microhardness values of the clad (~ 28.7 Hv) and core (~ 35.5 Hv) for the base material condition are found to be improved to ~ 34.7 Hv and 38.5 Hv, respectively, after FSP. Besides, the overall strength of the FSPed clad sheet increases by ~ 45% compared to the base material conditions. The microstructural homogenization and Si-induced precipitates act together to strengthen the interface in the clad material system. SEM images on the fractured surfaces of the tensile specimens reveal delamination between the AA4343 (clad layer) and AA3003 (core) for the base material condition, which disappears after FSP.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":703,\"journal\":{\"name\":\"Metals and Materials International\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals and Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12540-024-01776-9\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12540-024-01776-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of Microstructural Changes by Friction Stir Processing on the Clad-to-Core Interfacial Strength of Thin Aluminum-Clad Aluminum Sheets
The present study successfully utilizes friction stir processing (FSP) as a surface engineering tool on an AA4343-clad AA3003 sheet to improve the interfacial strength through microstructural homogenization. Compared to the base material condition, electron back-scattered diffraction analysis after FSP reveals a considerable reduction in grain morphological disparity between the clad layer and the core due to the occurrence of grain refinement by continuous dynamic recrystallization. Scanning electron microscopy (SEM) analysis reveals various Si-induced precipitations, including Al (Mn, Fe) Si, within the stir zone due to the diffusion of Si from the clad layer to the core during FSP. The influence of microstructural changes on improving the mechanical properties of the bi-layer clad sheet is also examined. The surface microhardness values of the clad (~ 28.7 Hv) and core (~ 35.5 Hv) for the base material condition are found to be improved to ~ 34.7 Hv and 38.5 Hv, respectively, after FSP. Besides, the overall strength of the FSPed clad sheet increases by ~ 45% compared to the base material conditions. The microstructural homogenization and Si-induced precipitates act together to strengthen the interface in the clad material system. SEM images on the fractured surfaces of the tensile specimens reveal delamination between the AA4343 (clad layer) and AA3003 (core) for the base material condition, which disappears after FSP.
期刊介绍:
Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.