使用 AI/ML 工具的顶点成像强子量热法

N. Akchurin, J. Cash, J. Damgov, X. Delashaw, K. Lamichhane, M. Harris, M. Kelley, S. Kunori, H. Mergate-Cacace, T. Peltola, O. Schneider, J. Sewell
{"title":"使用 AI/ML 工具的顶点成像强子量热法","authors":"N. Akchurin, J. Cash, J. Damgov, X. Delashaw, K. Lamichhane, M. Harris, M. Kelley, S. Kunori, H. Mergate-Cacace, T. Peltola, O. Schneider, J. Sewell","doi":"arxiv-2408.15385","DOIUrl":null,"url":null,"abstract":"The fluctuations in energy loss to processes that do not generate measurable\nsignals, such as binding energy losses, set the limit on achievable hadronic\nenergy resolution in traditional energy reconstruction techniques. The\ncorrelation between the number of hadronic interaction vertices in a shower and\ninvisible energy is found to be strong and is used to estimate invisible energy\nfraction in highly granular calorimeters in short time intervals (<10 ns). We\nsimulated images of hadronic showers using GEANT4 and deployed a neural network\nto analyze the images for energy regression. The neural network-based approach\nresults in significant improvement in energy resolution, from 13 % to 4 % in\nthe case of a Cherenkov calorimeter for 100 GeV pion showers. We discuss the\nsignificance of the phenomena responsible for this improvement and the plans\nfor experimental verification of these results and further development.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vertex Imaging Hadron Calorimetry Using AI/ML Tools\",\"authors\":\"N. Akchurin, J. Cash, J. Damgov, X. Delashaw, K. Lamichhane, M. Harris, M. Kelley, S. Kunori, H. Mergate-Cacace, T. Peltola, O. Schneider, J. Sewell\",\"doi\":\"arxiv-2408.15385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fluctuations in energy loss to processes that do not generate measurable\\nsignals, such as binding energy losses, set the limit on achievable hadronic\\nenergy resolution in traditional energy reconstruction techniques. The\\ncorrelation between the number of hadronic interaction vertices in a shower and\\ninvisible energy is found to be strong and is used to estimate invisible energy\\nfraction in highly granular calorimeters in short time intervals (<10 ns). We\\nsimulated images of hadronic showers using GEANT4 and deployed a neural network\\nto analyze the images for energy regression. The neural network-based approach\\nresults in significant improvement in energy resolution, from 13 % to 4 % in\\nthe case of a Cherenkov calorimeter for 100 GeV pion showers. We discuss the\\nsignificance of the phenomena responsible for this improvement and the plans\\nfor experimental verification of these results and further development.\",\"PeriodicalId\":501374,\"journal\":{\"name\":\"arXiv - PHYS - Instrumentation and Detectors\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Instrumentation and Detectors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Detectors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

能量损失的波动过程不会产生可测量的信号,例如结合能损失,这就限制了传统能量重建技术可实现的强子能量分辨率。研究发现,簇射中强子相互作用顶点的数量与隐形能量之间的相关性很强,可用于在短时间间隔(<10 毫微秒)内估算高颗粒量热计中的隐形能量比例。我们使用 GEANT4 模拟了强子阵列的图像,并部署了一个神经网络来分析图像以进行能量回归。基于神经网络的方法显著提高了能量分辨率,在100 GeV先驱示波的切伦科夫量热计中从13%提高到4%。我们讨论了导致这一改进的现象的重要性,以及对这些结果进行实验验证和进一步开发的计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vertex Imaging Hadron Calorimetry Using AI/ML Tools
The fluctuations in energy loss to processes that do not generate measurable signals, such as binding energy losses, set the limit on achievable hadronic energy resolution in traditional energy reconstruction techniques. The correlation between the number of hadronic interaction vertices in a shower and invisible energy is found to be strong and is used to estimate invisible energy fraction in highly granular calorimeters in short time intervals (<10 ns). We simulated images of hadronic showers using GEANT4 and deployed a neural network to analyze the images for energy regression. The neural network-based approach results in significant improvement in energy resolution, from 13 % to 4 % in the case of a Cherenkov calorimeter for 100 GeV pion showers. We discuss the significance of the phenomena responsible for this improvement and the plans for experimental verification of these results and further development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Impedance Matching Networks for Scanning Microwave Microscopy Ultraviolet cross-luminescence in ternary chlorides of alkali and alkaline-earth metals Performance Evaluation of an RFSoC Operating in a 1.25 Tesla Magnetic Field Numerical Studies of Straw Tube Detectors Advanced Halide Scintillators: From the Bulk to Nano
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1