{"title":"使用镁粉的自推进式高温合成 MgAlON","authors":"T. G. Akopdzhanyan, D. I. Abzalov","doi":"10.3103/S1061386224700146","DOIUrl":null,"url":null,"abstract":"<p>MgAlON was prepared by self-propagating high-temperature synthesis using powder mixture of aluminum, aluminum oxide, magnesium oxide, magnesium, and magnesium perchlorate as an oxidizer. The effect of magnesium oxidation and aluminum nitriding reactions on the combustion parameters was studied. It was revealed that combustion temperature and burning velocity increase as Mg is added. It was found that the combustion products derived from mixtures containing magnesium powder have a fine-grained structure composed by only MgAlON.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"33 3","pages":"195 - 199"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Propagating High-Temperature Synthesis of MgAlON Using Mg Powder\",\"authors\":\"T. G. Akopdzhanyan, D. I. Abzalov\",\"doi\":\"10.3103/S1061386224700146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>MgAlON was prepared by self-propagating high-temperature synthesis using powder mixture of aluminum, aluminum oxide, magnesium oxide, magnesium, and magnesium perchlorate as an oxidizer. The effect of magnesium oxidation and aluminum nitriding reactions on the combustion parameters was studied. It was revealed that combustion temperature and burning velocity increase as Mg is added. It was found that the combustion products derived from mixtures containing magnesium powder have a fine-grained structure composed by only MgAlON.</p>\",\"PeriodicalId\":595,\"journal\":{\"name\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"volume\":\"33 3\",\"pages\":\"195 - 199\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1061386224700146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386224700146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Self-Propagating High-Temperature Synthesis of MgAlON Using Mg Powder
MgAlON was prepared by self-propagating high-temperature synthesis using powder mixture of aluminum, aluminum oxide, magnesium oxide, magnesium, and magnesium perchlorate as an oxidizer. The effect of magnesium oxidation and aluminum nitriding reactions on the combustion parameters was studied. It was revealed that combustion temperature and burning velocity increase as Mg is added. It was found that the combustion products derived from mixtures containing magnesium powder have a fine-grained structure composed by only MgAlON.
期刊介绍:
International Journal of Self-Propagating High-Temperature Synthesis is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.