热带气旋登陆期间厄尔尼诺/南方涛动情景下墨西哥西北部山区和沿海地区的降水反应

IF 2.8 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Theoretical and Applied Climatology Pub Date : 2024-08-19 DOI:10.1007/s00704-024-05136-w
José P. Vega-Camarena, Luis Brito-Castillo
{"title":"热带气旋登陆期间厄尔尼诺/南方涛动情景下墨西哥西北部山区和沿海地区的降水反应","authors":"José P. Vega-Camarena, Luis Brito-Castillo","doi":"10.1007/s00704-024-05136-w","DOIUrl":null,"url":null,"abstract":"<p>El Niño-Southern Oscillation (ENSO) tropical cyclones (TCs) are important moisture sources in semiarid, mountainous Northwestern Mexico. Studies conducted in this region have not expressed differences between coastal and mountainous regions under different ENSO scenarios, instead, changes have been explored in the entire region as a whole. Attempting to fill this gap, the present study conducted an analysis of observed changes in rainfall contribution of landfalling tropical cyclones under five scenarios: (1) El Niño, (2) La Niña, (3) El Niño to La Niña, (4) La Niña to El Niño, and (5) Neutral on mountainous, foothill and coastal regions. In addition, the changes observed were explored under five scenarios in monthly precipitation peak and seasonal cumulative precipitation, which are important characteristics during the North American Monsoon (NAM). The results indicate that most changes occur in the coastal region during La Niña, El Niño to La Niña and Neutral scenarios, where more than half of the stations recorded average precipitation above their regional climatology. Thus, six TCs made landfall with an average of 73% of stations that recorded accumulations above their regional climatology (i.e. NAM precipitation) mainly affecting the southern foothill region. Although the observed changes do not show a well-defined seasonal pattern distinguishing the three regions, changes may be identified and explained by the latitudinal gradient, relief and soil moisture characteristics strongly influenced by local factors. Unfortunately, these results make it difficult to forecast the precipitation response under the different scenarios.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":"64 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precipitation response in mountainous and coastal regions of Northwestern Mexico under ENSO scenarios during the landfall of tropical cyclones\",\"authors\":\"José P. Vega-Camarena, Luis Brito-Castillo\",\"doi\":\"10.1007/s00704-024-05136-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>El Niño-Southern Oscillation (ENSO) tropical cyclones (TCs) are important moisture sources in semiarid, mountainous Northwestern Mexico. Studies conducted in this region have not expressed differences between coastal and mountainous regions under different ENSO scenarios, instead, changes have been explored in the entire region as a whole. Attempting to fill this gap, the present study conducted an analysis of observed changes in rainfall contribution of landfalling tropical cyclones under five scenarios: (1) El Niño, (2) La Niña, (3) El Niño to La Niña, (4) La Niña to El Niño, and (5) Neutral on mountainous, foothill and coastal regions. In addition, the changes observed were explored under five scenarios in monthly precipitation peak and seasonal cumulative precipitation, which are important characteristics during the North American Monsoon (NAM). The results indicate that most changes occur in the coastal region during La Niña, El Niño to La Niña and Neutral scenarios, where more than half of the stations recorded average precipitation above their regional climatology. Thus, six TCs made landfall with an average of 73% of stations that recorded accumulations above their regional climatology (i.e. NAM precipitation) mainly affecting the southern foothill region. Although the observed changes do not show a well-defined seasonal pattern distinguishing the three regions, changes may be identified and explained by the latitudinal gradient, relief and soil moisture characteristics strongly influenced by local factors. Unfortunately, these results make it difficult to forecast the precipitation response under the different scenarios.</p>\",\"PeriodicalId\":22945,\"journal\":{\"name\":\"Theoretical and Applied Climatology\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Climatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00704-024-05136-w\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Climatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00704-024-05136-w","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

厄尔尼诺-南方涛动(ENSO)热带气旋(TC)是墨西哥西北部半干旱山区的重要水汽来源。在这一地区进行的研究并没有表现出不同厄尔尼诺/南方涛动情况下沿海地区和山区的差异,而是对整个地区的变化进行了探讨。为了填补这一空白,本研究分析了在五种情景下观测到的登陆热带气旋降雨量的变化:(1) 厄尔尼诺,(2) 拉尼娜,(3) 从厄尔尼诺到拉尼娜,(4) 从拉尼娜到厄尔尼诺,以及 (5) 山区、山麓和沿海地区的中性。此外,还探讨了在五种情景下月降水峰值和季节累积降水量的变化情况,这两种降水量是北美季风(NAM)期间的重要特征。结果表明,在拉尼娜、厄尔尼诺到拉尼娜和中性情景下,沿海地区的变化最大,半数以上的站点记录的平均降水量高于其区域气候学特征。因此,6 个热带气旋登陆时,平均 73% 的站点记录到的累积降水量高于其区域气候资料(即 NAM 降水量),主要影响了南麓地区。虽然观测到的变化并没有显示出区分三个地区的明确季节模式,但纬度梯度、地形和土壤水分特征等受当地因素影响较大的因素可以确定和解释这些变化。遗憾的是,这些结果难以预测不同方案下的降水反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Precipitation response in mountainous and coastal regions of Northwestern Mexico under ENSO scenarios during the landfall of tropical cyclones

El Niño-Southern Oscillation (ENSO) tropical cyclones (TCs) are important moisture sources in semiarid, mountainous Northwestern Mexico. Studies conducted in this region have not expressed differences between coastal and mountainous regions under different ENSO scenarios, instead, changes have been explored in the entire region as a whole. Attempting to fill this gap, the present study conducted an analysis of observed changes in rainfall contribution of landfalling tropical cyclones under five scenarios: (1) El Niño, (2) La Niña, (3) El Niño to La Niña, (4) La Niña to El Niño, and (5) Neutral on mountainous, foothill and coastal regions. In addition, the changes observed were explored under five scenarios in monthly precipitation peak and seasonal cumulative precipitation, which are important characteristics during the North American Monsoon (NAM). The results indicate that most changes occur in the coastal region during La Niña, El Niño to La Niña and Neutral scenarios, where more than half of the stations recorded average precipitation above their regional climatology. Thus, six TCs made landfall with an average of 73% of stations that recorded accumulations above their regional climatology (i.e. NAM precipitation) mainly affecting the southern foothill region. Although the observed changes do not show a well-defined seasonal pattern distinguishing the three regions, changes may be identified and explained by the latitudinal gradient, relief and soil moisture characteristics strongly influenced by local factors. Unfortunately, these results make it difficult to forecast the precipitation response under the different scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Applied Climatology
Theoretical and Applied Climatology 地学-气象与大气科学
CiteScore
6.00
自引率
11.80%
发文量
376
审稿时长
4.3 months
期刊介绍: Theoretical and Applied Climatology covers the following topics: - climate modeling, climatic changes and climate forecasting, micro- to mesoclimate, applied meteorology as in agro- and forestmeteorology, biometeorology, building meteorology and atmospheric radiation problems as they relate to the biosphere - effects of anthropogenic and natural aerosols or gaseous trace constituents - hardware and software elements of meteorological measurements, including techniques of remote sensing
期刊最新文献
Climatological analysis of rainfall over Hinatuan City, Surigao del Sur in eastern Mindanao—the wettest location in the Philippines Evaluating NEX-GDDP-CMIP6 performance in complex terrain for forecasting key freezing rain factors High-resolution projections of future FWI conditions for Portugal according to CMIP6 future climate scenarios On the variability of convective available potential energy in the Mediterranean Region for the 83-year period 1940–2022; signals of climate emergency Wavelet local multiple correlation analysis of long-term AOD, LST, and NDVI time-series over different climatic zones of India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1