DNA 甲基化在促进鱼类生活史特征多样性方面的作用

IF 5.9 1区 农林科学 Q1 FISHERIES Reviews in Fish Biology and Fisheries Pub Date : 2024-09-10 DOI:10.1007/s11160-024-09887-7
James Kho, Daniel E. Ruzzante
{"title":"DNA 甲基化在促进鱼类生活史特征多样性方面的作用","authors":"James Kho, Daniel E. Ruzzante","doi":"10.1007/s11160-024-09887-7","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The incorporation of epigenetics (i.e., change in gene activity without change in DNA sequence) into studies of gene regulation and phenotypic expression has contributed to a significant improvement in our understanding of the evolution of life history traits. One important epigenetic mechanism is DNA methylation, which in vertebrates generally means the addition of a methyl group to a cytosine thus altering gene expression. Here, we discuss progress and gaps in our knowledge of the role of DNA methylation in facilitating diversity across four life history trait classes in fishes: developmental processes, size and growth rates, aging and sexual maturity, and sex regulation. We discuss insights into the regulatory aspect of gene expression in fish which can ultimately influence phenotypic diversity and speciation. We discuss how temperature influences methylation patterns affecting multiple traits. DNA methylation influence on gene expression varies depending on tissue types and the location within the genome of the methylated site (i.e., DNA methylation can increase or decrease gene expression). The role of DNA methyltransferases is also a common denominator across all tissue types in influencing the global methylome status regardless of species or environmental stressor. Organismal development stage is equally important, a decrease in global methylation throughout early development generally corresponds to elevated gene expression associated with growth and development. Finally, we discuss general limitations of DNA methylation studies with a focus on fish. We then provide recommendations for future research.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":21181,"journal":{"name":"Reviews in Fish Biology and Fisheries","volume":"5 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of DNA methylation in facilitating life history trait diversity in fishes\",\"authors\":\"James Kho, Daniel E. Ruzzante\",\"doi\":\"10.1007/s11160-024-09887-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The incorporation of epigenetics (i.e., change in gene activity without change in DNA sequence) into studies of gene regulation and phenotypic expression has contributed to a significant improvement in our understanding of the evolution of life history traits. One important epigenetic mechanism is DNA methylation, which in vertebrates generally means the addition of a methyl group to a cytosine thus altering gene expression. Here, we discuss progress and gaps in our knowledge of the role of DNA methylation in facilitating diversity across four life history trait classes in fishes: developmental processes, size and growth rates, aging and sexual maturity, and sex regulation. We discuss insights into the regulatory aspect of gene expression in fish which can ultimately influence phenotypic diversity and speciation. We discuss how temperature influences methylation patterns affecting multiple traits. DNA methylation influence on gene expression varies depending on tissue types and the location within the genome of the methylated site (i.e., DNA methylation can increase or decrease gene expression). The role of DNA methyltransferases is also a common denominator across all tissue types in influencing the global methylome status regardless of species or environmental stressor. Organismal development stage is equally important, a decrease in global methylation throughout early development generally corresponds to elevated gene expression associated with growth and development. Finally, we discuss general limitations of DNA methylation studies with a focus on fish. We then provide recommendations for future research.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\",\"PeriodicalId\":21181,\"journal\":{\"name\":\"Reviews in Fish Biology and Fisheries\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Fish Biology and Fisheries\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11160-024-09887-7\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Fish Biology and Fisheries","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11160-024-09887-7","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

摘要

摘要 将表观遗传学(即在不改变 DNA 序列的情况下改变基因活性)纳入基因调控和表型表达的研究,大大提高了我们对生活史性状进化的认识。DNA甲基化是一种重要的表观遗传机制,在脊椎动物中,甲基化通常意味着在胞嘧啶上添加一个甲基,从而改变基因的表达。在这里,我们将讨论 DNA 甲基化在促进鱼类四类生活史性状多样性方面的作用所取得的进展和存在的差距:发育过程、体型和生长率、衰老和性成熟以及性别调控。我们讨论了对鱼类基因表达调控方面的见解,这种调控最终会影响表型多样性和物种分化。我们讨论了温度如何影响甲基化模式,从而影响多种性状。DNA 甲基化对基因表达的影响因组织类型和甲基化位点在基因组中的位置而异(即 DNA 甲基化可增加或减少基因表达)。DNA 甲基转移酶的作用也是所有组织类型在影响全球甲基组状态方面的一个共同点,而与物种或环境压力无关。生物体的发育阶段也同样重要,整个早期发育过程中全球甲基化的降低通常与生长发育相关基因表达的升高相对应。最后,我们以鱼类为重点,讨论了 DNA 甲基化研究的一般局限性。然后,我们对未来的研究提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The role of DNA methylation in facilitating life history trait diversity in fishes

Abstract

The incorporation of epigenetics (i.e., change in gene activity without change in DNA sequence) into studies of gene regulation and phenotypic expression has contributed to a significant improvement in our understanding of the evolution of life history traits. One important epigenetic mechanism is DNA methylation, which in vertebrates generally means the addition of a methyl group to a cytosine thus altering gene expression. Here, we discuss progress and gaps in our knowledge of the role of DNA methylation in facilitating diversity across four life history trait classes in fishes: developmental processes, size and growth rates, aging and sexual maturity, and sex regulation. We discuss insights into the regulatory aspect of gene expression in fish which can ultimately influence phenotypic diversity and speciation. We discuss how temperature influences methylation patterns affecting multiple traits. DNA methylation influence on gene expression varies depending on tissue types and the location within the genome of the methylated site (i.e., DNA methylation can increase or decrease gene expression). The role of DNA methyltransferases is also a common denominator across all tissue types in influencing the global methylome status regardless of species or environmental stressor. Organismal development stage is equally important, a decrease in global methylation throughout early development generally corresponds to elevated gene expression associated with growth and development. Finally, we discuss general limitations of DNA methylation studies with a focus on fish. We then provide recommendations for future research.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in Fish Biology and Fisheries
Reviews in Fish Biology and Fisheries 农林科学-海洋与淡水生物学
CiteScore
10.00
自引率
8.10%
发文量
42
审稿时长
12-24 weeks
期刊介绍: The subject matter is focused on include evolutionary biology, zoogeography, taxonomy, including biochemical taxonomy and stock identification, genetics and genetic manipulation, physiology, functional morphology, behaviour, ecology, fisheries assessment, development, exploitation and conservation. however, reviews will be published from any field of fish biology where the emphasis is placed on adaptation, function or exploitation in the whole organism.
期刊最新文献
Can pots be an alternative fishing gear to gillnets? A Mediterranean case study The role of DNA methylation in facilitating life history trait diversity in fishes Anguillids: widely studied yet poorly understood—a literature review of the current state of Anguilla eel research Cytogenetics and DNA barcode in Hoplias gr. malabaricus (Characiformes, Erythrinidae) reveals correlation between karyomorphs and valid species Observing fish behavior in towed fishing gear—is there an influence of artificial light?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1