三维打印石墨烯增强复合材料:机遇与挑战

IF 4.8 2区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Polymer Composites Pub Date : 2024-09-12 DOI:10.1002/pc.29068
R. Banupriya, T. P. Jeevan, H. V. Divya, T. G. Yashas Gowda, G. A. Manjunath
{"title":"三维打印石墨烯增强复合材料:机遇与挑战","authors":"R. Banupriya, T. P. Jeevan, H. V. Divya, T. G. Yashas Gowda, G. A. Manjunath","doi":"10.1002/pc.29068","DOIUrl":null,"url":null,"abstract":"3D printing, also known as additive manufacturing, is an innovative technology that allows for the construction of complex, three‐dimensional structures layer by layer using digital plans. This technology has transformed industries including as aerospace, automotive, healthcare, and consumer items by allowing for rapid prototyping, customization, and the manufacture of complex geometries. Graphene, a single layer of carbon atoms organized in a hexagonal lattice, is well‐known for its superior electrical and thermal conductivity, as well as its great tensile strength. When graphene is mixed with composite materials, it greatly improves their mechanical and functional properties, resulting in composites with higher strength, conductivity, lower weight, and greater durability. The combination of 3D printing and graphene‐reinforced composites creates new opportunities for the production of high‐performance, application‐specific structures. This review identifies key advancements in the synthesis, processing, and application of these composites, while also addressing critical challenges such as material dispersion, scalability, and the impact of graphene on the 3D printing process itself. A significant conclusion of this review is the recognition that overcoming these challenges is not only feasible but essential for harnessing the full potential of 3D‐printed graphene‐reinforced composites across diverse industrial sectors. The unique contribution of this work lies in providing a comprehensive roadmap for future research, guiding efforts to bridge current gaps and drive innovation in this emerging field.","PeriodicalId":20375,"journal":{"name":"Polymer Composites","volume":"5 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D‐printed graphene‐reinforced composites: Opportunities and challenges\",\"authors\":\"R. Banupriya, T. P. Jeevan, H. V. Divya, T. G. Yashas Gowda, G. A. Manjunath\",\"doi\":\"10.1002/pc.29068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D printing, also known as additive manufacturing, is an innovative technology that allows for the construction of complex, three‐dimensional structures layer by layer using digital plans. This technology has transformed industries including as aerospace, automotive, healthcare, and consumer items by allowing for rapid prototyping, customization, and the manufacture of complex geometries. Graphene, a single layer of carbon atoms organized in a hexagonal lattice, is well‐known for its superior electrical and thermal conductivity, as well as its great tensile strength. When graphene is mixed with composite materials, it greatly improves their mechanical and functional properties, resulting in composites with higher strength, conductivity, lower weight, and greater durability. The combination of 3D printing and graphene‐reinforced composites creates new opportunities for the production of high‐performance, application‐specific structures. This review identifies key advancements in the synthesis, processing, and application of these composites, while also addressing critical challenges such as material dispersion, scalability, and the impact of graphene on the 3D printing process itself. A significant conclusion of this review is the recognition that overcoming these challenges is not only feasible but essential for harnessing the full potential of 3D‐printed graphene‐reinforced composites across diverse industrial sectors. The unique contribution of this work lies in providing a comprehensive roadmap for future research, guiding efforts to bridge current gaps and drive innovation in this emerging field.\",\"PeriodicalId\":20375,\"journal\":{\"name\":\"Polymer Composites\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Composites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pc.29068\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pc.29068","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

三维打印又称增材制造,是一种创新技术,可利用数字图纸逐层构建复杂的三维结构。这项技术通过实现快速原型设计、定制和复杂几何形状的制造,改变了航空航天、汽车、医疗保健和消费品等行业。石墨烯是由单层碳原子组成的六边形晶格,以其卓越的导电性、导热性和抗拉强度而闻名。当石墨烯与复合材料混合时,它能大大改善复合材料的机械和功能特性,使复合材料具有更高的强度、导电性、更轻的重量和更高的耐用性。三维打印与石墨烯增强复合材料的结合为生产高性能、特定应用结构创造了新机遇。本综述指出了这些复合材料在合成、加工和应用方面的主要进展,同时也探讨了材料分散、可扩展性以及石墨烯对 3D 打印工艺本身的影响等关键挑战。本综述的一个重要结论是认识到克服这些挑战不仅是可行的,而且对于在不同工业领域充分发挥三维打印石墨烯增强复合材料的潜力至关重要。这项工作的独特贡献在于为未来研究提供了一个全面的路线图,指导人们努力缩小目前的差距,推动这一新兴领域的创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D‐printed graphene‐reinforced composites: Opportunities and challenges
3D printing, also known as additive manufacturing, is an innovative technology that allows for the construction of complex, three‐dimensional structures layer by layer using digital plans. This technology has transformed industries including as aerospace, automotive, healthcare, and consumer items by allowing for rapid prototyping, customization, and the manufacture of complex geometries. Graphene, a single layer of carbon atoms organized in a hexagonal lattice, is well‐known for its superior electrical and thermal conductivity, as well as its great tensile strength. When graphene is mixed with composite materials, it greatly improves their mechanical and functional properties, resulting in composites with higher strength, conductivity, lower weight, and greater durability. The combination of 3D printing and graphene‐reinforced composites creates new opportunities for the production of high‐performance, application‐specific structures. This review identifies key advancements in the synthesis, processing, and application of these composites, while also addressing critical challenges such as material dispersion, scalability, and the impact of graphene on the 3D printing process itself. A significant conclusion of this review is the recognition that overcoming these challenges is not only feasible but essential for harnessing the full potential of 3D‐printed graphene‐reinforced composites across diverse industrial sectors. The unique contribution of this work lies in providing a comprehensive roadmap for future research, guiding efforts to bridge current gaps and drive innovation in this emerging field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Composites
Polymer Composites 工程技术-材料科学:复合
CiteScore
7.50
自引率
32.70%
发文量
673
审稿时长
3.1 months
期刊介绍: Polymer Composites is the engineering and scientific journal serving the fields of reinforced plastics and polymer composites including research, production, processing, and applications. PC brings you the details of developments in this rapidly expanding area of technology long before they are commercial realities.
期刊最新文献
Magnetic elastomer composites with tunable magnetization behaviors for flexible magnetic transducers Experimental investigation of the compressive behavior of epoxy nanocomposites reinforced with straight and helical carbon nanotubes The effect of silane-modified carbon black and nano-silica, individually and in combination, on the performance of ethylene–propylene–diene monomer rubber Enhancement of mechanical and structural characteristics through the hybridization of carbon fiber with Cordia-dichotoma/polyester composite Impact of graphite on tribo-mechanical, structural, and thermal behaviors of polyoxymethylene copolymer/glass fiber hybrid composites via Taguchi optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1