纤维增强聚合物棒材延展性设计方法综述及未来展望

IF 4.8 2区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Polymer Composites Pub Date : 2024-09-11 DOI:10.1002/pc.29036
Yunbo Xu, Yu Zhang, Haitang Zhu, Danying Gao, Daotian Qin, Liangping Zhao
{"title":"纤维增强聚合物棒材延展性设计方法综述及未来展望","authors":"Yunbo Xu, Yu Zhang, Haitang Zhu, Danying Gao, Daotian Qin, Liangping Zhao","doi":"10.1002/pc.29036","DOIUrl":null,"url":null,"abstract":"<jats:label/>In this paper, the ductility design methods of fiber‐reinforced polymer (FRP) bars were reviewed. It was observed that the graded fracture theory was typically used as the ductility design method of hybrid fiber‐reinforced polymer (HFRP) bar. However, the ductile HFRP bar designed based on the graded fracture theory had the inherent defects of low modulus of elasticity, high yield strain, and post‐yielded sudden drop in stress, which prevented its large‐scale application in civil engineering. In order to eliminate these deficiencies, the authors proposed a novel design concept for a single‐type FRP bar. This novel single‐type FRP bar consisted of highly aligned discontinuous fiber and continuous fiber. The failure mode of this discontinuous/continuous single‐type FRP bar was different from that of the ductile HFRP bar designed based on the graded fracture theory of composite. The tensile ductility of discontinuous/continuous single‐type FRP bar originated from the debonding and stable pull‐out of the discontinuous fiber layer under increasing load. As a result, the post‐yielded sudden drop in stress can be removed for the ductile HFRP bar designed based on the graded fracture theory of composite. In addition, the yield strain can be controlled by adjusting the length of discontinuous fiber layer. In addition, the design configuration, innovative production process, and corresponding theoretical calculations of this novel single‐type FRP bar will be presented in the future.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>The ductility design methods of fiber‐reinforced polymer bars were reviewed.</jats:list-item> <jats:list-item>Deficiencies of ductile HFRP bar composed of continuous fibers were reported.</jats:list-item> <jats:list-item>A novel discontinuous/continuous single‐type FRP bar was foreseen.</jats:list-item> </jats:list>","PeriodicalId":20375,"journal":{"name":"Polymer Composites","volume":"20 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on the ductility design method of fiber‐reinforced polymer bar and future prospects\",\"authors\":\"Yunbo Xu, Yu Zhang, Haitang Zhu, Danying Gao, Daotian Qin, Liangping Zhao\",\"doi\":\"10.1002/pc.29036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:label/>In this paper, the ductility design methods of fiber‐reinforced polymer (FRP) bars were reviewed. It was observed that the graded fracture theory was typically used as the ductility design method of hybrid fiber‐reinforced polymer (HFRP) bar. However, the ductile HFRP bar designed based on the graded fracture theory had the inherent defects of low modulus of elasticity, high yield strain, and post‐yielded sudden drop in stress, which prevented its large‐scale application in civil engineering. In order to eliminate these deficiencies, the authors proposed a novel design concept for a single‐type FRP bar. This novel single‐type FRP bar consisted of highly aligned discontinuous fiber and continuous fiber. The failure mode of this discontinuous/continuous single‐type FRP bar was different from that of the ductile HFRP bar designed based on the graded fracture theory of composite. The tensile ductility of discontinuous/continuous single‐type FRP bar originated from the debonding and stable pull‐out of the discontinuous fiber layer under increasing load. As a result, the post‐yielded sudden drop in stress can be removed for the ductile HFRP bar designed based on the graded fracture theory of composite. In addition, the yield strain can be controlled by adjusting the length of discontinuous fiber layer. In addition, the design configuration, innovative production process, and corresponding theoretical calculations of this novel single‐type FRP bar will be presented in the future.Highlights<jats:list list-type=\\\"bullet\\\"> <jats:list-item>The ductility design methods of fiber‐reinforced polymer bars were reviewed.</jats:list-item> <jats:list-item>Deficiencies of ductile HFRP bar composed of continuous fibers were reported.</jats:list-item> <jats:list-item>A novel discontinuous/continuous single‐type FRP bar was foreseen.</jats:list-item> </jats:list>\",\"PeriodicalId\":20375,\"journal\":{\"name\":\"Polymer Composites\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Composites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pc.29036\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pc.29036","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了纤维增强聚合物(FRP)棒材的延性设计方法。研究发现,分级断裂理论通常被用作混合纤维增强聚合物(HFRP)棒材的延性设计方法。然而,基于分级断裂理论设计的韧性 HFRP 棒材存在弹性模量低、屈服应变大、屈服后应力骤降等固有缺陷,因此无法在土木工程中大规模应用。为了消除这些缺陷,作者提出了一种新型单一类型玻璃钢条的设计理念。这种新型单一类型玻璃钢条由高度排列的间断纤维和连续纤维组成。这种非连续/连续单一类型玻璃钢棒材的破坏模式与根据复合材料分级断裂理论设计的韧性高频玻璃钢棒材的破坏模式不同。非连续/连续单一类型玻璃钢棒材的拉伸延性源于非连续纤维层在载荷增加时的脱粘和稳定拉出。因此,基于复合材料分级断裂理论设计的韧性高频玻璃钢条可以消除屈服后的应力骤降。此外,还可以通过调整不连续纤维层的长度来控制屈服应力。重点综述了纤维增强聚合物棒材的延性设计方法。报告了由连续纤维组成的延展性高频玻璃钢棒材的缺陷。展望了一种新型的间断/连续单一类型玻璃钢棒材。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review on the ductility design method of fiber‐reinforced polymer bar and future prospects
In this paper, the ductility design methods of fiber‐reinforced polymer (FRP) bars were reviewed. It was observed that the graded fracture theory was typically used as the ductility design method of hybrid fiber‐reinforced polymer (HFRP) bar. However, the ductile HFRP bar designed based on the graded fracture theory had the inherent defects of low modulus of elasticity, high yield strain, and post‐yielded sudden drop in stress, which prevented its large‐scale application in civil engineering. In order to eliminate these deficiencies, the authors proposed a novel design concept for a single‐type FRP bar. This novel single‐type FRP bar consisted of highly aligned discontinuous fiber and continuous fiber. The failure mode of this discontinuous/continuous single‐type FRP bar was different from that of the ductile HFRP bar designed based on the graded fracture theory of composite. The tensile ductility of discontinuous/continuous single‐type FRP bar originated from the debonding and stable pull‐out of the discontinuous fiber layer under increasing load. As a result, the post‐yielded sudden drop in stress can be removed for the ductile HFRP bar designed based on the graded fracture theory of composite. In addition, the yield strain can be controlled by adjusting the length of discontinuous fiber layer. In addition, the design configuration, innovative production process, and corresponding theoretical calculations of this novel single‐type FRP bar will be presented in the future.Highlights The ductility design methods of fiber‐reinforced polymer bars were reviewed. Deficiencies of ductile HFRP bar composed of continuous fibers were reported. A novel discontinuous/continuous single‐type FRP bar was foreseen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Composites
Polymer Composites 工程技术-材料科学:复合
CiteScore
7.50
自引率
32.70%
发文量
673
审稿时长
3.1 months
期刊介绍: Polymer Composites is the engineering and scientific journal serving the fields of reinforced plastics and polymer composites including research, production, processing, and applications. PC brings you the details of developments in this rapidly expanding area of technology long before they are commercial realities.
期刊最新文献
Magnetic elastomer composites with tunable magnetization behaviors for flexible magnetic transducers Experimental investigation of the compressive behavior of epoxy nanocomposites reinforced with straight and helical carbon nanotubes The effect of silane-modified carbon black and nano-silica, individually and in combination, on the performance of ethylene–propylene–diene monomer rubber Enhancement of mechanical and structural characteristics through the hybridization of carbon fiber with Cordia-dichotoma/polyester composite Impact of graphite on tribo-mechanical, structural, and thermal behaviors of polyoxymethylene copolymer/glass fiber hybrid composites via Taguchi optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1