{"title":"环境条件对玻璃纤维增强聚酯复合材料磨损行为影响的研究","authors":"Mihriban Korku, Recep İlhan, Erol Feyzullahoğlu","doi":"10.1002/pc.28992","DOIUrl":null,"url":null,"abstract":"<jats:label/>Glass fiber reinforced polymer (GFRP) composites can be subjected to different environmental conditions such as temperature, humidity, ultraviolet radiation, hydrothermal cycle, acidic and alkaline solution in environments where they operate. These environmental conditions cause different damage mechanisms in composites such as pore formation, micro‐cracks, delamination, fiber breakage, fiber/matrix interface separation, plasticization, swelling and surface color change. In this study, wear properties of hybrid glass fiber reinforced polymer composites exposed to various environmental conditions for constant load (60 N), speed (500 rpm) and 2 h were examined comprehensively, depending on material content and environmental conditions. In this experimental study, the service conditions in glass fiber reinforced composites were simulated using different artificial aging environments such as acidic environment, hydrothermal cycle and UV radiation. In addition to the material content, it appears that the environmental conditions to which composites are exposed has a significant effect on friction coefficient. Considering environmental conditions, it is seen that the acid environment and hydrothermal cycle have reduced wear resistance of GFRP composites, while UV radiation improved wear resistance of the composites. In C2 sample, the wear rates under different conditions are 1.87 × 10<jats:sup>−14</jats:sup> m<jats:sup>3</jats:sup>/Nm in non‐treated sample, 6.05 × 10<jats:sup>−14</jats:sup> m<jats:sup>3</jats:sup>/Nm in acid environment, 4.79 × 10<jats:sup>−14</jats:sup> m<jats:sup>3</jats:sup>/Nm in hydrothermal cycle and 0.59 × 10<jats:sup>−14</jats:sup> m<jats:sup>3</jats:sup>/Nm in UV radiation.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>Friction coefficient of glass fiber reinforced polyester (GFRP) is higher under aged condition compared to non‐treated.</jats:list-item> <jats:list-item>Glass fibers used in correct proportions can reduce friction coefficient in GFRP.</jats:list-item> <jats:list-item>GFRP exposed to environmental conditions has an important effect on wear.</jats:list-item> <jats:list-item>Acid environment and hydrothermal cycle has reduced wear resistance of GFRP.</jats:list-item> <jats:list-item>UV radiation improved wear resistance of GFRP composite.</jats:list-item> </jats:list>","PeriodicalId":20375,"journal":{"name":"Polymer Composites","volume":"21 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of effects of environmental conditions on wear behaviors of glass fiber reinforced polyester composite materials\",\"authors\":\"Mihriban Korku, Recep İlhan, Erol Feyzullahoğlu\",\"doi\":\"10.1002/pc.28992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:label/>Glass fiber reinforced polymer (GFRP) composites can be subjected to different environmental conditions such as temperature, humidity, ultraviolet radiation, hydrothermal cycle, acidic and alkaline solution in environments where they operate. These environmental conditions cause different damage mechanisms in composites such as pore formation, micro‐cracks, delamination, fiber breakage, fiber/matrix interface separation, plasticization, swelling and surface color change. In this study, wear properties of hybrid glass fiber reinforced polymer composites exposed to various environmental conditions for constant load (60 N), speed (500 rpm) and 2 h were examined comprehensively, depending on material content and environmental conditions. In this experimental study, the service conditions in glass fiber reinforced composites were simulated using different artificial aging environments such as acidic environment, hydrothermal cycle and UV radiation. In addition to the material content, it appears that the environmental conditions to which composites are exposed has a significant effect on friction coefficient. Considering environmental conditions, it is seen that the acid environment and hydrothermal cycle have reduced wear resistance of GFRP composites, while UV radiation improved wear resistance of the composites. In C2 sample, the wear rates under different conditions are 1.87 × 10<jats:sup>−14</jats:sup> m<jats:sup>3</jats:sup>/Nm in non‐treated sample, 6.05 × 10<jats:sup>−14</jats:sup> m<jats:sup>3</jats:sup>/Nm in acid environment, 4.79 × 10<jats:sup>−14</jats:sup> m<jats:sup>3</jats:sup>/Nm in hydrothermal cycle and 0.59 × 10<jats:sup>−14</jats:sup> m<jats:sup>3</jats:sup>/Nm in UV radiation.Highlights<jats:list list-type=\\\"bullet\\\"> <jats:list-item>Friction coefficient of glass fiber reinforced polyester (GFRP) is higher under aged condition compared to non‐treated.</jats:list-item> <jats:list-item>Glass fibers used in correct proportions can reduce friction coefficient in GFRP.</jats:list-item> <jats:list-item>GFRP exposed to environmental conditions has an important effect on wear.</jats:list-item> <jats:list-item>Acid environment and hydrothermal cycle has reduced wear resistance of GFRP.</jats:list-item> <jats:list-item>UV radiation improved wear resistance of GFRP composite.</jats:list-item> </jats:list>\",\"PeriodicalId\":20375,\"journal\":{\"name\":\"Polymer Composites\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Composites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pc.28992\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pc.28992","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Investigation of effects of environmental conditions on wear behaviors of glass fiber reinforced polyester composite materials
Glass fiber reinforced polymer (GFRP) composites can be subjected to different environmental conditions such as temperature, humidity, ultraviolet radiation, hydrothermal cycle, acidic and alkaline solution in environments where they operate. These environmental conditions cause different damage mechanisms in composites such as pore formation, micro‐cracks, delamination, fiber breakage, fiber/matrix interface separation, plasticization, swelling and surface color change. In this study, wear properties of hybrid glass fiber reinforced polymer composites exposed to various environmental conditions for constant load (60 N), speed (500 rpm) and 2 h were examined comprehensively, depending on material content and environmental conditions. In this experimental study, the service conditions in glass fiber reinforced composites were simulated using different artificial aging environments such as acidic environment, hydrothermal cycle and UV radiation. In addition to the material content, it appears that the environmental conditions to which composites are exposed has a significant effect on friction coefficient. Considering environmental conditions, it is seen that the acid environment and hydrothermal cycle have reduced wear resistance of GFRP composites, while UV radiation improved wear resistance of the composites. In C2 sample, the wear rates under different conditions are 1.87 × 10−14 m3/Nm in non‐treated sample, 6.05 × 10−14 m3/Nm in acid environment, 4.79 × 10−14 m3/Nm in hydrothermal cycle and 0.59 × 10−14 m3/Nm in UV radiation.HighlightsFriction coefficient of glass fiber reinforced polyester (GFRP) is higher under aged condition compared to non‐treated.Glass fibers used in correct proportions can reduce friction coefficient in GFRP.GFRP exposed to environmental conditions has an important effect on wear.Acid environment and hydrothermal cycle has reduced wear resistance of GFRP.UV radiation improved wear resistance of GFRP composite.
期刊介绍:
Polymer Composites is the engineering and scientific journal serving the fields of reinforced plastics and polymer composites including research, production, processing, and applications. PC brings you the details of developments in this rapidly expanding area of technology long before they are commercial realities.