Antonina I. Karlina, Yulia I. Karlina, Vitaly A. Gladkikh
{"title":"研究低碳钢激光表面熔化后合金层的微观结构、相组成和耐磨性 20","authors":"Antonina I. Karlina, Yulia I. Karlina, Vitaly A. Gladkikh","doi":"10.1007/s11015-024-01782-7","DOIUrl":null,"url":null,"abstract":"<div><p>Laser surface alloying is a method used to modify a metal surface to produce a thin surface layer with improved mechanical properties. The results of tests on surface carburizing and boriding of steel 20 using a laser beam are presented. Before laser irradiation, the surface of the material was coated. Two types of coating were used: suspensions of graphite powder and boron carbide. Steel 20 was carburized and borided by melting the coating and the substrate. This processing produced various microstructures in the surface layer, depending on the type of coating used and the processing parameters. The microhardness of the alloyed layers was measured along the depth axis. The surface layer consists of an alloying zone and a heat-affected zone. Some specimens carburized by surface alloying displayed cracking and porosity due to carbon enrichment and high solidification rates. The laser-borated surface has a remelting zone consisting of an eutectic mixture of iron borides FeB, Fe<sub>2</sub>B, and Fe<sub>3</sub>B. The dense boride zone located near the surface, while the content of the eutectic mixture of borides and martensite increased toward the base metal. The microhardness of the borated layer was 1200 HV. The alloy layers were tested for abrasive wear.</p></div>","PeriodicalId":702,"journal":{"name":"Metallurgist","volume":"68 5","pages":"757 - 766"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studying the microstructure, phase composition, and wear resistance of alloyed layers after laser surface melting of low-carbon steel 20\",\"authors\":\"Antonina I. Karlina, Yulia I. Karlina, Vitaly A. Gladkikh\",\"doi\":\"10.1007/s11015-024-01782-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Laser surface alloying is a method used to modify a metal surface to produce a thin surface layer with improved mechanical properties. The results of tests on surface carburizing and boriding of steel 20 using a laser beam are presented. Before laser irradiation, the surface of the material was coated. Two types of coating were used: suspensions of graphite powder and boron carbide. Steel 20 was carburized and borided by melting the coating and the substrate. This processing produced various microstructures in the surface layer, depending on the type of coating used and the processing parameters. The microhardness of the alloyed layers was measured along the depth axis. The surface layer consists of an alloying zone and a heat-affected zone. Some specimens carburized by surface alloying displayed cracking and porosity due to carbon enrichment and high solidification rates. The laser-borated surface has a remelting zone consisting of an eutectic mixture of iron borides FeB, Fe<sub>2</sub>B, and Fe<sub>3</sub>B. The dense boride zone located near the surface, while the content of the eutectic mixture of borides and martensite increased toward the base metal. The microhardness of the borated layer was 1200 HV. The alloy layers were tested for abrasive wear.</p></div>\",\"PeriodicalId\":702,\"journal\":{\"name\":\"Metallurgist\",\"volume\":\"68 5\",\"pages\":\"757 - 766\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgist\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11015-024-01782-7\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgist","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11015-024-01782-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Studying the microstructure, phase composition, and wear resistance of alloyed layers after laser surface melting of low-carbon steel 20
Laser surface alloying is a method used to modify a metal surface to produce a thin surface layer with improved mechanical properties. The results of tests on surface carburizing and boriding of steel 20 using a laser beam are presented. Before laser irradiation, the surface of the material was coated. Two types of coating were used: suspensions of graphite powder and boron carbide. Steel 20 was carburized and borided by melting the coating and the substrate. This processing produced various microstructures in the surface layer, depending on the type of coating used and the processing parameters. The microhardness of the alloyed layers was measured along the depth axis. The surface layer consists of an alloying zone and a heat-affected zone. Some specimens carburized by surface alloying displayed cracking and porosity due to carbon enrichment and high solidification rates. The laser-borated surface has a remelting zone consisting of an eutectic mixture of iron borides FeB, Fe2B, and Fe3B. The dense boride zone located near the surface, while the content of the eutectic mixture of borides and martensite increased toward the base metal. The microhardness of the borated layer was 1200 HV. The alloy layers were tested for abrasive wear.
期刊介绍:
Metallurgist is the leading Russian journal in metallurgy. Publication started in 1956.
Basic topics covered include:
State of the art and development of enterprises in ferrous and nonferrous metallurgy and mining;
Metallurgy of ferrous, nonferrous, rare, and precious metals; Metallurgical equipment;
Automation and control;
Protection of labor;
Protection of the environment;
Resources and energy saving;
Quality and certification;
History of metallurgy;
Inventions (patents).