四十年来丹麦鸟类群落在气候和土地使用变化中的变化

IF 3.1 2区 环境科学与生态学 Q2 ECOLOGY Oikos Pub Date : 2024-08-30 DOI:10.1111/oik.10697
Charles W. Davison, Carsten Rahbek, Naia Morueta‐Holme
{"title":"四十年来丹麦鸟类群落在气候和土地使用变化中的变化","authors":"Charles W. Davison, Carsten Rahbek, Naia Morueta‐Holme","doi":"10.1111/oik.10697","DOIUrl":null,"url":null,"abstract":"Our understanding of how human activities impact biodiversity comes largely from space‐for‐time substitutions. However, spatial gradients are a poor surrogate for changes through time as they do not account for dynamic processes such as delayed extinction debts. Here we contribute towards filling this research gap by assessing the trajectories of local avian assemblages over 40+ years of climate and land‐use change. Using four decades of volunteer observations in Denmark we investigated long‐term trends of local bird richness, community structure, function, abundance, and biomass to better understand their anthropogenic drivers. Between 1976 and 2020, volunteers recorded ~ 2.4 million birds at 378 routes spanning a median of 15 years (range: 10–44). At the local level, we found a restructuring of bird communities over time (6% change per decade) and declines in abundance (−7% per decade), but stability in biomass, functional diversity, and spatial turnover. Local species richness showed a shallow decline on average. These results provide evidence that temporal turnover and loss of individuals are the most prominent features of recent ecological change in these communities. We found that the rate of local warming was positively associated with trends of species richness and functional diversity, suggesting a potential redistribution of warm‐adapted species. Meanwhile, communities that were becoming more spatially homogenous were associated with urban and farmland areas. In space, environmental changes are often distinct and recognisable, e.g. between forest and farmland. Through time, however, changes can be infrequent, gradual, and non‐linear. Despite these challenges, our results illustrate the power of spatially replicated, long‐term biodiversity monitoring programs for detecting the trends and attributing drivers of local biodiversity change.","PeriodicalId":19496,"journal":{"name":"Oikos","volume":"99 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in Danish bird communities over four decades of climate and land‐use change\",\"authors\":\"Charles W. Davison, Carsten Rahbek, Naia Morueta‐Holme\",\"doi\":\"10.1111/oik.10697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our understanding of how human activities impact biodiversity comes largely from space‐for‐time substitutions. However, spatial gradients are a poor surrogate for changes through time as they do not account for dynamic processes such as delayed extinction debts. Here we contribute towards filling this research gap by assessing the trajectories of local avian assemblages over 40+ years of climate and land‐use change. Using four decades of volunteer observations in Denmark we investigated long‐term trends of local bird richness, community structure, function, abundance, and biomass to better understand their anthropogenic drivers. Between 1976 and 2020, volunteers recorded ~ 2.4 million birds at 378 routes spanning a median of 15 years (range: 10–44). At the local level, we found a restructuring of bird communities over time (6% change per decade) and declines in abundance (−7% per decade), but stability in biomass, functional diversity, and spatial turnover. Local species richness showed a shallow decline on average. These results provide evidence that temporal turnover and loss of individuals are the most prominent features of recent ecological change in these communities. We found that the rate of local warming was positively associated with trends of species richness and functional diversity, suggesting a potential redistribution of warm‐adapted species. Meanwhile, communities that were becoming more spatially homogenous were associated with urban and farmland areas. In space, environmental changes are often distinct and recognisable, e.g. between forest and farmland. Through time, however, changes can be infrequent, gradual, and non‐linear. Despite these challenges, our results illustrate the power of spatially replicated, long‐term biodiversity monitoring programs for detecting the trends and attributing drivers of local biodiversity change.\",\"PeriodicalId\":19496,\"journal\":{\"name\":\"Oikos\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oikos\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/oik.10697\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oikos","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/oik.10697","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们对人类活动如何影响生物多样性的了解主要来自空间-时间替代。然而,空间梯度并不能很好地替代时间变化,因为它们无法解释诸如延迟灭绝债务等动态过程。在此,我们通过评估当地鸟类在 40 多年的气候和土地利用变化中的活动轨迹,为填补这一研究空白做出了贡献。通过四十年在丹麦的志愿者观察,我们调查了当地鸟类丰富度、群落结构、功能、丰度和生物量的长期趋势,以更好地了解其人为驱动因素。从 1976 年到 2020 年,志愿者在 378 条路线上记录了约 240 万只鸟类,时间跨度中位数为 15 年(范围:10-44)。在地方层面,我们发现鸟类群落随着时间的推移发生了重组(每十年变化 6%),丰度下降(每十年-7%),但生物量、功能多样性和空间周转率保持稳定。当地物种丰富度平均下降幅度较小。这些结果证明,时间更替和个体损失是这些群落近期生态变化的最显著特征。我们发现,当地变暖的速度与物种丰富度和功能多样性的趋势呈正相关,这表明适应暖气候的物种可能会重新分布。同时,在空间上变得更加单一的群落与城市和农田地区有关。在空间上,环境变化通常是明显和可识别的,例如森林和农田之间的变化。然而,从时间上看,变化可能是不频繁的、渐进的和非线性的。尽管存在这些挑战,但我们的研究结果表明,在空间上复制的长期生物多样性监测计划能够发现当地生物多样性变化的趋势和驱动因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Changes in Danish bird communities over four decades of climate and land‐use change
Our understanding of how human activities impact biodiversity comes largely from space‐for‐time substitutions. However, spatial gradients are a poor surrogate for changes through time as they do not account for dynamic processes such as delayed extinction debts. Here we contribute towards filling this research gap by assessing the trajectories of local avian assemblages over 40+ years of climate and land‐use change. Using four decades of volunteer observations in Denmark we investigated long‐term trends of local bird richness, community structure, function, abundance, and biomass to better understand their anthropogenic drivers. Between 1976 and 2020, volunteers recorded ~ 2.4 million birds at 378 routes spanning a median of 15 years (range: 10–44). At the local level, we found a restructuring of bird communities over time (6% change per decade) and declines in abundance (−7% per decade), but stability in biomass, functional diversity, and spatial turnover. Local species richness showed a shallow decline on average. These results provide evidence that temporal turnover and loss of individuals are the most prominent features of recent ecological change in these communities. We found that the rate of local warming was positively associated with trends of species richness and functional diversity, suggesting a potential redistribution of warm‐adapted species. Meanwhile, communities that were becoming more spatially homogenous were associated with urban and farmland areas. In space, environmental changes are often distinct and recognisable, e.g. between forest and farmland. Through time, however, changes can be infrequent, gradual, and non‐linear. Despite these challenges, our results illustrate the power of spatially replicated, long‐term biodiversity monitoring programs for detecting the trends and attributing drivers of local biodiversity change.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Oikos
Oikos 环境科学-生态学
CiteScore
6.20
自引率
5.90%
发文量
152
审稿时长
6-12 weeks
期刊介绍: Oikos publishes original and innovative research on all aspects of ecology, defined as organism-environment interactions at various spatiotemporal scales, so including macroecology and evolutionary ecology. Emphasis is on theoretical and empirical work aimed at generalization and synthesis across taxa, systems and ecological disciplines. Papers can contribute to new developments in ecology by reporting novel theory or critical empirical results, and "synthesis" can include developing new theory, tests of general hypotheses, or bringing together established or emerging areas of ecology. Confirming or extending the established literature, by for example showing results that are novel for a new taxon, or purely applied research, is given low priority.
期刊最新文献
Linking fine‐root diameter across root orders with climatic, biological and edaphic factors in the Northern Hemisphere Do plants respond to multi‐year disturbance rhythms and are we missing the beat? Importance of accounting for imperfect detection of plants in the estimation of population growth rates Landscape structures and stand attributes jointly regulate forest productivity Evolutionary cycles in a model of nestmate recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1