静压轴承中的热油携带理论分析

IF 1.7 4区 工程技术 Q3 MECHANICS Heat and Mass Transfer Pub Date : 2024-08-13 DOI:10.1007/s00231-024-03514-8
Zhang Yanqin, Jin Shi, Jiang Jinming, Long Dunyao
{"title":"静压轴承中的热油携带理论分析","authors":"Zhang Yanqin, Jin Shi, Jiang Jinming, Long Dunyao","doi":"10.1007/s00231-024-03514-8","DOIUrl":null,"url":null,"abstract":"<p>Through the analysis of hot oil carrying theory, the problem of oil film heat accumulation in hydrostatic bearing can be revealed, so as to avoid serious lubrication failure caused by heat accumulation. In this paper, the hot oil carrying factor is defined and the mathematical model of the thermal oil carrying characteristics of the oil film is established by taking the beveled double rectangular oil pad hydrostatic bearing as the object, and the hot oil carrying law under different working conditions is obtained by changing the inclination angle of the beveled oil pad at 0.0230°, 0.0250° and 0.0280°, respectively. Theoretical calculations and simulation studies show that within the range of the circumferential inclination of the oil pad with better dynamic pressure effect of the bearing, the inclination has little effect on the oil film hot oil carrying. When the speed of the workbench is lower than 10r/min, no oil film hot oil carrying phenomenon occurs. When the speed is in the range of 10r/min-100r/min, a part of the load will cause the phenomenon of oil film hot oil carrying. And when the speed exceeds 100r/min, the heat accumulation of the oil film is the most serious at this time. There are many reasons for the lubrication failure of hydrostatic bearings, and hot oil carrying is a new research direction, this paper starts from the oil film heating mechanism of beveled oil pads hydrostatic bearings, and describes the phenomenon of hot oil carrying.</p>","PeriodicalId":12908,"journal":{"name":"Heat and Mass Transfer","volume":"12 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical analysis of hot oil carrying in hydrostatic bearing\",\"authors\":\"Zhang Yanqin, Jin Shi, Jiang Jinming, Long Dunyao\",\"doi\":\"10.1007/s00231-024-03514-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Through the analysis of hot oil carrying theory, the problem of oil film heat accumulation in hydrostatic bearing can be revealed, so as to avoid serious lubrication failure caused by heat accumulation. In this paper, the hot oil carrying factor is defined and the mathematical model of the thermal oil carrying characteristics of the oil film is established by taking the beveled double rectangular oil pad hydrostatic bearing as the object, and the hot oil carrying law under different working conditions is obtained by changing the inclination angle of the beveled oil pad at 0.0230°, 0.0250° and 0.0280°, respectively. Theoretical calculations and simulation studies show that within the range of the circumferential inclination of the oil pad with better dynamic pressure effect of the bearing, the inclination has little effect on the oil film hot oil carrying. When the speed of the workbench is lower than 10r/min, no oil film hot oil carrying phenomenon occurs. When the speed is in the range of 10r/min-100r/min, a part of the load will cause the phenomenon of oil film hot oil carrying. And when the speed exceeds 100r/min, the heat accumulation of the oil film is the most serious at this time. There are many reasons for the lubrication failure of hydrostatic bearings, and hot oil carrying is a new research direction, this paper starts from the oil film heating mechanism of beveled oil pads hydrostatic bearings, and describes the phenomenon of hot oil carrying.</p>\",\"PeriodicalId\":12908,\"journal\":{\"name\":\"Heat and Mass Transfer\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00231-024-03514-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00231-024-03514-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

通过对热油携带理论的分析,可以揭示静压轴承中的油膜热积聚问题,从而避免热积聚导致的严重润滑故障。本文以斜面双矩形油垫静压轴承为研究对象,定义了热油携带系数,建立了油膜热油携带特性的数学模型,并通过改变斜面油垫的倾角分别为 0.0230°、0.0250°和 0.0280°,得到了不同工况下的热油携带规律。理论计算和仿真研究表明,在轴承动压效果较好的油垫圆周倾角范围内,倾角对油膜热油承载影响不大。当工作台转速低于 10r/min 时,不会出现油膜热油携带现象。当转速在 10r/min-100r/min 之间时,部分载荷会导致油膜热油携带现象。而当转速超过 100r/min 时,此时的油膜积热现象最为严重。静压轴承润滑失效的原因有很多,热油携带是一个新的研究方向,本文从斜面油垫静压轴承的油膜发热机理入手,阐述了热油携带现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Theoretical analysis of hot oil carrying in hydrostatic bearing

Through the analysis of hot oil carrying theory, the problem of oil film heat accumulation in hydrostatic bearing can be revealed, so as to avoid serious lubrication failure caused by heat accumulation. In this paper, the hot oil carrying factor is defined and the mathematical model of the thermal oil carrying characteristics of the oil film is established by taking the beveled double rectangular oil pad hydrostatic bearing as the object, and the hot oil carrying law under different working conditions is obtained by changing the inclination angle of the beveled oil pad at 0.0230°, 0.0250° and 0.0280°, respectively. Theoretical calculations and simulation studies show that within the range of the circumferential inclination of the oil pad with better dynamic pressure effect of the bearing, the inclination has little effect on the oil film hot oil carrying. When the speed of the workbench is lower than 10r/min, no oil film hot oil carrying phenomenon occurs. When the speed is in the range of 10r/min-100r/min, a part of the load will cause the phenomenon of oil film hot oil carrying. And when the speed exceeds 100r/min, the heat accumulation of the oil film is the most serious at this time. There are many reasons for the lubrication failure of hydrostatic bearings, and hot oil carrying is a new research direction, this paper starts from the oil film heating mechanism of beveled oil pads hydrostatic bearings, and describes the phenomenon of hot oil carrying.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heat and Mass Transfer
Heat and Mass Transfer 工程技术-力学
CiteScore
4.80
自引率
4.50%
发文量
148
审稿时长
8.0 months
期刊介绍: This journal serves the circulation of new developments in the field of basic research of heat and mass transfer phenomena, as well as related material properties and their measurements. Thereby applications to engineering problems are promoted. The journal is the traditional "Wärme- und Stoffübertragung" which was changed to "Heat and Mass Transfer" back in 1995.
期刊最新文献
Thermal deformation analysis of motorized spindle base on thermo-solid structure coupling theory Bee bread: sorption isotherms, thermodynamic characteristics of moisture adsorption and evaluation of adsorbed water Experimental analysis of transient and steady-state heat transfer from an impinging jet to a moving plate A numerical study of liquid water distribution and transport in PEM fuel cell using Cathode-Anode model Assessment of carrier agents in terms of physicochemical, energy analyses and bioactive constituents of blackberry (Rubus fruticosus L.) powder processed by convective and hybrid drying methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1