Weiwei Zhang, Bin Yao, Haotian Yang, Xueru Li, Lina Qiu, Shaoping Li
{"title":"金属及其化合物/黑磷基纳米材料在光催化氢演化中的应用","authors":"Weiwei Zhang, Bin Yao, Haotian Yang, Xueru Li, Lina Qiu, Shaoping Li","doi":"10.3390/coatings14091141","DOIUrl":null,"url":null,"abstract":"Black phosphorous (BP) is a novel composite material. Its carrier mobility can reach more than 1000 cm2·V−1·s−1 and has a direct bandgap adjustable from 0.3 to 1.5 eV with thickness, so its photovoltaic performance is good. These properties show great potential for applications in many fields, such as energy storage, sensors, biomedicine, and environmental treatment. With the deepening of research, it is found that the instability of BP under natural environmental conditions and the limitations of its preparation limit its development, while combining with other materials can further optimize its performance, which not only improves the mechanical properties of the material but also gives it new functions. Based on this, this paper summarizes the preparation and optical properties of highly stable metals and their compounds/BP-based nanomaterials in recent years, highlights the progress of their application in photocatalytic hydrogen evolution, and gives an outlook on the challenges and opportunities for the future development of BP in photocatalysis.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":"59 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Metals and Their Compounds/Black Phosphorus-Based Nanomaterials in the Direction of Photocatalytic Hydrogen Evolution\",\"authors\":\"Weiwei Zhang, Bin Yao, Haotian Yang, Xueru Li, Lina Qiu, Shaoping Li\",\"doi\":\"10.3390/coatings14091141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Black phosphorous (BP) is a novel composite material. Its carrier mobility can reach more than 1000 cm2·V−1·s−1 and has a direct bandgap adjustable from 0.3 to 1.5 eV with thickness, so its photovoltaic performance is good. These properties show great potential for applications in many fields, such as energy storage, sensors, biomedicine, and environmental treatment. With the deepening of research, it is found that the instability of BP under natural environmental conditions and the limitations of its preparation limit its development, while combining with other materials can further optimize its performance, which not only improves the mechanical properties of the material but also gives it new functions. Based on this, this paper summarizes the preparation and optical properties of highly stable metals and their compounds/BP-based nanomaterials in recent years, highlights the progress of their application in photocatalytic hydrogen evolution, and gives an outlook on the challenges and opportunities for the future development of BP in photocatalysis.\",\"PeriodicalId\":10520,\"journal\":{\"name\":\"Coatings\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/coatings14091141\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14091141","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
摘要
黑磷(BP)是一种新型复合材料。其载流子迁移率可达 1000 cm2-V-1-s-1 以上,直接带隙可随厚度在 0.3 至 1.5 eV 之间调节,因此光电性能良好。这些特性为其在储能、传感器、生物医学和环境治理等多个领域的应用提供了巨大的潜力。随着研究的深入,人们发现 BP 在自然环境条件下的不稳定性和制备的局限性限制了它的发展,而与其他材料的结合则能进一步优化其性能,不仅能改善材料的机械性能,还能赋予其新的功能。基于此,本文总结了近年来高稳定金属及其化合物/BP基纳米材料的制备和光学性能,重点介绍了其在光催化氢气进化中的应用进展,并展望了BP在光催化领域未来发展的挑战和机遇。
Application of Metals and Their Compounds/Black Phosphorus-Based Nanomaterials in the Direction of Photocatalytic Hydrogen Evolution
Black phosphorous (BP) is a novel composite material. Its carrier mobility can reach more than 1000 cm2·V−1·s−1 and has a direct bandgap adjustable from 0.3 to 1.5 eV with thickness, so its photovoltaic performance is good. These properties show great potential for applications in many fields, such as energy storage, sensors, biomedicine, and environmental treatment. With the deepening of research, it is found that the instability of BP under natural environmental conditions and the limitations of its preparation limit its development, while combining with other materials can further optimize its performance, which not only improves the mechanical properties of the material but also gives it new functions. Based on this, this paper summarizes the preparation and optical properties of highly stable metals and their compounds/BP-based nanomaterials in recent years, highlights the progress of their application in photocatalytic hydrogen evolution, and gives an outlook on the challenges and opportunities for the future development of BP in photocatalysis.
CoatingsMaterials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍:
Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal:
* manuscripts regarding research proposals and research ideas will be particularly welcomed
* electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material