Navdeep Malik, N. Allwyn Blessing Johnson, Sarit K. Das
{"title":"利用阴极-阳极模型对 PEM 燃料电池中的液态水分布和传输进行数值研究","authors":"Navdeep Malik, N. Allwyn Blessing Johnson, Sarit K. Das","doi":"10.1007/s00231-024-03515-7","DOIUrl":null,"url":null,"abstract":"<p>The performance of a PEM fuel cell that uses hydrogen as the fuel and pure oxygen as the oxidant strongly depends on water management, which has been primarily studied in a single-channel domain. Therefore, there is a need to examine water distribution throughout the entire fuel cell domain, including both the anode and cathode sides. Liquid water can cause flooding in the gas diffusion layer, catalyst layer, and channels, reducing the active surface area of the catalyst and, consequently, the reaction rate. Phase transfer between liquid water and water vapor influences the buildup of liquid water in these domains. In the present work, a three-dimensional, non-isothermal, two-phase numerical model incorporating both the cathode and anode domains has been developed to study water distribution. This model includes water phase transition in the gas diffusion layer, catalyst layer, and channels. The mixed flow distributor is used to analyze water formation and distribution throughout the domain. The study shows that using pure oxygen at the inlet increases the ohmic region in the polarization curve and decreases concentration losses, which could be important for applications such as spacecraft. Additionally, the effects of liquid water accumulation in the porous layers on reactant transport and cell performance are investigated.</p>","PeriodicalId":12908,"journal":{"name":"Heat and Mass Transfer","volume":"22 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A numerical study of liquid water distribution and transport in PEM fuel cell using Cathode-Anode model\",\"authors\":\"Navdeep Malik, N. Allwyn Blessing Johnson, Sarit K. Das\",\"doi\":\"10.1007/s00231-024-03515-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The performance of a PEM fuel cell that uses hydrogen as the fuel and pure oxygen as the oxidant strongly depends on water management, which has been primarily studied in a single-channel domain. Therefore, there is a need to examine water distribution throughout the entire fuel cell domain, including both the anode and cathode sides. Liquid water can cause flooding in the gas diffusion layer, catalyst layer, and channels, reducing the active surface area of the catalyst and, consequently, the reaction rate. Phase transfer between liquid water and water vapor influences the buildup of liquid water in these domains. In the present work, a three-dimensional, non-isothermal, two-phase numerical model incorporating both the cathode and anode domains has been developed to study water distribution. This model includes water phase transition in the gas diffusion layer, catalyst layer, and channels. The mixed flow distributor is used to analyze water formation and distribution throughout the domain. The study shows that using pure oxygen at the inlet increases the ohmic region in the polarization curve and decreases concentration losses, which could be important for applications such as spacecraft. Additionally, the effects of liquid water accumulation in the porous layers on reactant transport and cell performance are investigated.</p>\",\"PeriodicalId\":12908,\"journal\":{\"name\":\"Heat and Mass Transfer\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00231-024-03515-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00231-024-03515-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
A numerical study of liquid water distribution and transport in PEM fuel cell using Cathode-Anode model
The performance of a PEM fuel cell that uses hydrogen as the fuel and pure oxygen as the oxidant strongly depends on water management, which has been primarily studied in a single-channel domain. Therefore, there is a need to examine water distribution throughout the entire fuel cell domain, including both the anode and cathode sides. Liquid water can cause flooding in the gas diffusion layer, catalyst layer, and channels, reducing the active surface area of the catalyst and, consequently, the reaction rate. Phase transfer between liquid water and water vapor influences the buildup of liquid water in these domains. In the present work, a three-dimensional, non-isothermal, two-phase numerical model incorporating both the cathode and anode domains has been developed to study water distribution. This model includes water phase transition in the gas diffusion layer, catalyst layer, and channels. The mixed flow distributor is used to analyze water formation and distribution throughout the domain. The study shows that using pure oxygen at the inlet increases the ohmic region in the polarization curve and decreases concentration losses, which could be important for applications such as spacecraft. Additionally, the effects of liquid water accumulation in the porous layers on reactant transport and cell performance are investigated.
期刊介绍:
This journal serves the circulation of new developments in the field of basic research of heat and mass transfer phenomena, as well as related material properties and their measurements. Thereby applications to engineering problems are promoted.
The journal is the traditional "Wärme- und Stoffübertragung" which was changed to "Heat and Mass Transfer" back in 1995.