磁场对交变海森堡链热力学性质的影响

IF 1.6 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Indian Journal of Physics Pub Date : 2024-08-13 DOI:10.1007/s12648-024-03382-2
Hamed Rezania
{"title":"磁场对交变海森堡链热力学性质的影响","authors":"Hamed Rezania","doi":"10.1007/s12648-024-03382-2","DOIUrl":null,"url":null,"abstract":"<p>We study the effects of longitudinal magnetic field and temperature on the thermodynamic properties of one dimensional alternating Heisenberg antiferromagnet on the chain in the presence of dimerization parameter. In particular, the temperature dependence of specific heat have been investigated for various dimerization parameter and magnetic field strength in the model Hamiltonian. Using a hard core bosonic representation, the behaviors of thermodynamic properties have been studied by means of excitation spectrum of mapped bosonic gas. The effect of dimerization parameter, as the ratio between two types of exchange constants, on thermodynamic properties has also been studied via the bosonic model by Green’s function approach. Furthermore we have studied the magnetic field dependence of specific heat and magnetization for various dimerization parameters. At low temperatures, the specific heat is found to be monotonically increasing with temperature for magnetic fields in the gapped field induced phase region. We have found the magnetic field dependence of specific heat shows a monotonic decreasing behavior for various dimerization parameter due to increase of energy gap in the excitation spectrum. Also we have studied the dependence of magnetization on magnetic field for different dimerization parameters.</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effects of magnetic field on thermodynamic properties of alternating Heisenberg chain\",\"authors\":\"Hamed Rezania\",\"doi\":\"10.1007/s12648-024-03382-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the effects of longitudinal magnetic field and temperature on the thermodynamic properties of one dimensional alternating Heisenberg antiferromagnet on the chain in the presence of dimerization parameter. In particular, the temperature dependence of specific heat have been investigated for various dimerization parameter and magnetic field strength in the model Hamiltonian. Using a hard core bosonic representation, the behaviors of thermodynamic properties have been studied by means of excitation spectrum of mapped bosonic gas. The effect of dimerization parameter, as the ratio between two types of exchange constants, on thermodynamic properties has also been studied via the bosonic model by Green’s function approach. Furthermore we have studied the magnetic field dependence of specific heat and magnetization for various dimerization parameters. At low temperatures, the specific heat is found to be monotonically increasing with temperature for magnetic fields in the gapped field induced phase region. We have found the magnetic field dependence of specific heat shows a monotonic decreasing behavior for various dimerization parameter due to increase of energy gap in the excitation spectrum. Also we have studied the dependence of magnetization on magnetic field for different dimerization parameters.</p>\",\"PeriodicalId\":584,\"journal\":{\"name\":\"Indian Journal of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s12648-024-03382-2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s12648-024-03382-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了纵向磁场和温度对存在二聚化参数的链上一维交变海森堡反铁磁体的热力学性质的影响。特别是,研究了模型哈密顿中不同二聚化参数和磁场强度下比热的温度依赖性。利用硬核玻色表示法,通过映射玻色气体的激发光谱研究了热力学性质的行为。我们还通过玻色子模型的格林函数方法,研究了二聚化参数(即两种交换常数之比)对热力学性质的影响。此外,我们还研究了不同二聚化参数下比热和磁化的磁场依赖性。在低温下,我们发现在间隙磁场诱导相区的磁场中,比热随温度单调上升。我们发现,由于激发光谱中能隙的增加,在不同的二聚参数下,磁场对比热的依赖性呈现单调递减的行为。此外,我们还研究了不同二聚化参数下磁化对磁场的依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effects of magnetic field on thermodynamic properties of alternating Heisenberg chain

We study the effects of longitudinal magnetic field and temperature on the thermodynamic properties of one dimensional alternating Heisenberg antiferromagnet on the chain in the presence of dimerization parameter. In particular, the temperature dependence of specific heat have been investigated for various dimerization parameter and magnetic field strength in the model Hamiltonian. Using a hard core bosonic representation, the behaviors of thermodynamic properties have been studied by means of excitation spectrum of mapped bosonic gas. The effect of dimerization parameter, as the ratio between two types of exchange constants, on thermodynamic properties has also been studied via the bosonic model by Green’s function approach. Furthermore we have studied the magnetic field dependence of specific heat and magnetization for various dimerization parameters. At low temperatures, the specific heat is found to be monotonically increasing with temperature for magnetic fields in the gapped field induced phase region. We have found the magnetic field dependence of specific heat shows a monotonic decreasing behavior for various dimerization parameter due to increase of energy gap in the excitation spectrum. Also we have studied the dependence of magnetization on magnetic field for different dimerization parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indian Journal of Physics
Indian Journal of Physics 物理-物理:综合
CiteScore
3.40
自引率
10.00%
发文量
275
审稿时长
3-8 weeks
期刊介绍: Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.
期刊最新文献
Enhancing microstructure and magnetic properties of ribbons of Cu–Co–Ti alloy through ball milling: experimental insights and theoretical perspectives The electrical characterization of V2O5/p-Si prepared by spray pyrolysis technique using perfume atomizer Saturation effect in confined quantum systems with energy-dependent potentials Radiative neutron capture reaction rates for stellar nucleosynthesis Investigation of characteristics of ionospheric vertical plasma drift during sunset over the mid-latitude station Nicosia, Cyprus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1