Jinxiong Fang, Da-fang Zhang, Kun Xie, Luyun Xu, Xia-an Bi
{"title":"基于大脑功能和结构数据的双线性感知融合算法,用于 ASD 诊断和感兴趣区识别","authors":"Jinxiong Fang, Da-fang Zhang, Kun Xie, Luyun Xu, Xia-an Bi","doi":"10.1007/s12539-024-00651-w","DOIUrl":null,"url":null,"abstract":"<p>Autism spectrum disorder (ASD) is a serious mental disorder with a complex pathogenesis mechanism and variable presentation among individuals. Although many deep learning algorithms have been used to diagnose ASD, most of them focus on a single modality of data, resulting in limited information extraction and poor stability. In this paper, we propose a bilinear perceptual fusion (BPF) algorithm that leverages data from multiple modalities. In our algorithm, different schemes are used to extract features according to the characteristics of functional and structural data. Through bilinear operations, the associations between the functional and structural features of each region of interest (ROI) are captured. Then the associations are used to integrate the feature representation. Graph convolutional neural networks (GCNs) can effectively utilize topology and node features in brain network analysis. Therefore, we design a deep learning framework called BPF-GCN and conduct experiments on publicly available ASD dataset. The results show that the classification accuracy of BPF-GCN reached 82.35%, surpassing existing methods. This demonstrates the superiority of its classification performance, and the framework can extract ROIs related to ASD. Our work provides a valuable reference for the timely diagnosis and treatment of ASD.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3><p>Based on the extracted functional and structural features, we design a generic framework called BPF-GCN. It can not only diagnose ASD, but also identify pathogenic ROIs. BPF-GCN consists of four parts. They are extraction of brain functional features, extraction of brain structural features, feature fusion and classification.</p>\n","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":"41 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bilinear Perceptual Fusion Algorithm Based on Brain Functional and Structural Data for ASD Diagnosis and Regions of Interest Identification\",\"authors\":\"Jinxiong Fang, Da-fang Zhang, Kun Xie, Luyun Xu, Xia-an Bi\",\"doi\":\"10.1007/s12539-024-00651-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Autism spectrum disorder (ASD) is a serious mental disorder with a complex pathogenesis mechanism and variable presentation among individuals. Although many deep learning algorithms have been used to diagnose ASD, most of them focus on a single modality of data, resulting in limited information extraction and poor stability. In this paper, we propose a bilinear perceptual fusion (BPF) algorithm that leverages data from multiple modalities. In our algorithm, different schemes are used to extract features according to the characteristics of functional and structural data. Through bilinear operations, the associations between the functional and structural features of each region of interest (ROI) are captured. Then the associations are used to integrate the feature representation. Graph convolutional neural networks (GCNs) can effectively utilize topology and node features in brain network analysis. Therefore, we design a deep learning framework called BPF-GCN and conduct experiments on publicly available ASD dataset. The results show that the classification accuracy of BPF-GCN reached 82.35%, surpassing existing methods. This demonstrates the superiority of its classification performance, and the framework can extract ROIs related to ASD. Our work provides a valuable reference for the timely diagnosis and treatment of ASD.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3><p>Based on the extracted functional and structural features, we design a generic framework called BPF-GCN. It can not only diagnose ASD, but also identify pathogenic ROIs. BPF-GCN consists of four parts. They are extraction of brain functional features, extraction of brain structural features, feature fusion and classification.</p>\\n\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00651-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00651-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Bilinear Perceptual Fusion Algorithm Based on Brain Functional and Structural Data for ASD Diagnosis and Regions of Interest Identification
Autism spectrum disorder (ASD) is a serious mental disorder with a complex pathogenesis mechanism and variable presentation among individuals. Although many deep learning algorithms have been used to diagnose ASD, most of them focus on a single modality of data, resulting in limited information extraction and poor stability. In this paper, we propose a bilinear perceptual fusion (BPF) algorithm that leverages data from multiple modalities. In our algorithm, different schemes are used to extract features according to the characteristics of functional and structural data. Through bilinear operations, the associations between the functional and structural features of each region of interest (ROI) are captured. Then the associations are used to integrate the feature representation. Graph convolutional neural networks (GCNs) can effectively utilize topology and node features in brain network analysis. Therefore, we design a deep learning framework called BPF-GCN and conduct experiments on publicly available ASD dataset. The results show that the classification accuracy of BPF-GCN reached 82.35%, surpassing existing methods. This demonstrates the superiority of its classification performance, and the framework can extract ROIs related to ASD. Our work provides a valuable reference for the timely diagnosis and treatment of ASD.
Graphical Abstract
Based on the extracted functional and structural features, we design a generic framework called BPF-GCN. It can not only diagnose ASD, but also identify pathogenic ROIs. BPF-GCN consists of four parts. They are extraction of brain functional features, extraction of brain structural features, feature fusion and classification.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.