带表面 V 形槽的压缩斜坡研究

IF 1.8 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of The Brazilian Society of Mechanical Sciences and Engineering Pub Date : 2024-08-28 DOI:10.1007/s40430-024-05154-9
J. Gnanasekaran, B. T. N. Sridhar
{"title":"带表面 V 形槽的压缩斜坡研究","authors":"J. Gnanasekaran, B. T. N. Sridhar","doi":"10.1007/s40430-024-05154-9","DOIUrl":null,"url":null,"abstract":"<p>An experimental investigation was undertaken to study the shock structure and wall pressure distribution in a laboratory model of a scramjet combustor with a wall-mounted un-swept compression ramp. The ramp surface was provided with a V-groove and the semi-groove angle (SGA) was varied from 87.5° to 70° in the experiments. Some numerical simulations were also performed to study the possible enhancement of vorticity behind the ramp aft surface (RAS) as a result of the presence of V-groove on the ramp surface. A combustor inlet total pressure of 1000 kPa was maintained with air as medium for all the cold flow experiments in the present investigation. The laboratory model had a 50-mm long constant area section followed by a 150-mm long diverging section. A constant inclination of 2° to the bottom wall was made by the combustor top wall in the diverging section. A constant width of 25 mm throughout the length of the rectangular cross-sectional combustor was maintained. The entry Mach number to the combustor inlet (<i>M</i><sub><i>e</i></sub>) was 2.55. Schlieren images of shock structure in the internal flow and wall pressure (<i>p</i><sub><i>w</i></sub>) distributions were obtained from the experiments. A significant enhancement in vorticity in the symmetry plane immediately downstream of the un-swept ramp with surface V-groove (semi-groove angles between 70° and 80°) over the plain un-swept and swept ramp configurations (without groove) was observed from the numerical computations.</p>","PeriodicalId":17252,"journal":{"name":"Journal of The Brazilian Society of Mechanical Sciences and Engineering","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on compression ramp with surface V-groove for scramjet combustor\",\"authors\":\"J. Gnanasekaran, B. T. N. Sridhar\",\"doi\":\"10.1007/s40430-024-05154-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An experimental investigation was undertaken to study the shock structure and wall pressure distribution in a laboratory model of a scramjet combustor with a wall-mounted un-swept compression ramp. The ramp surface was provided with a V-groove and the semi-groove angle (SGA) was varied from 87.5° to 70° in the experiments. Some numerical simulations were also performed to study the possible enhancement of vorticity behind the ramp aft surface (RAS) as a result of the presence of V-groove on the ramp surface. A combustor inlet total pressure of 1000 kPa was maintained with air as medium for all the cold flow experiments in the present investigation. The laboratory model had a 50-mm long constant area section followed by a 150-mm long diverging section. A constant inclination of 2° to the bottom wall was made by the combustor top wall in the diverging section. A constant width of 25 mm throughout the length of the rectangular cross-sectional combustor was maintained. The entry Mach number to the combustor inlet (<i>M</i><sub><i>e</i></sub>) was 2.55. Schlieren images of shock structure in the internal flow and wall pressure (<i>p</i><sub><i>w</i></sub>) distributions were obtained from the experiments. A significant enhancement in vorticity in the symmetry plane immediately downstream of the un-swept ramp with surface V-groove (semi-groove angles between 70° and 80°) over the plain un-swept and swept ramp configurations (without groove) was observed from the numerical computations.</p>\",\"PeriodicalId\":17252,\"journal\":{\"name\":\"Journal of The Brazilian Society of Mechanical Sciences and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Brazilian Society of Mechanical Sciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40430-024-05154-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Brazilian Society of Mechanical Sciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40430-024-05154-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们进行了一项实验调查,以研究带有安装在墙壁上的非横扫压缩斜面的扰流喷气燃烧器实验室模型中的冲击结构和壁压分布。斜面上有一个 V 形槽,实验中半槽角(SGA)从 87.5°到 70°不等。此外,还进行了一些数值模拟,以研究斜面后表面(RAS)后的涡流可能因斜面上 V 形槽的存在而增强。在本次研究的所有冷流实验中,以空气为介质的燃烧器入口总压保持在 1000 kPa。实验室模型有一个 50 毫米长的恒定面积部分,然后是一个 150 毫米长的发散部分。发散段的燃烧器顶壁与底壁呈 2° 恒定倾斜。矩形截面燃烧器的整个长度保持 25 毫米的恒定宽度。燃烧器入口的马赫数(Me)为 2.55。实验获得了内部气流冲击结构和壁压(pw)分布的 Schlieren 图像。从数值计算中观察到,与普通非横扫和横扫斜面结构(无凹槽)相比,紧靠带有表面 V 形凹槽的非横扫斜面(半凹槽角度介于 70° 和 80°之间)下游对称面上的涡度明显增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation on compression ramp with surface V-groove for scramjet combustor

An experimental investigation was undertaken to study the shock structure and wall pressure distribution in a laboratory model of a scramjet combustor with a wall-mounted un-swept compression ramp. The ramp surface was provided with a V-groove and the semi-groove angle (SGA) was varied from 87.5° to 70° in the experiments. Some numerical simulations were also performed to study the possible enhancement of vorticity behind the ramp aft surface (RAS) as a result of the presence of V-groove on the ramp surface. A combustor inlet total pressure of 1000 kPa was maintained with air as medium for all the cold flow experiments in the present investigation. The laboratory model had a 50-mm long constant area section followed by a 150-mm long diverging section. A constant inclination of 2° to the bottom wall was made by the combustor top wall in the diverging section. A constant width of 25 mm throughout the length of the rectangular cross-sectional combustor was maintained. The entry Mach number to the combustor inlet (Me) was 2.55. Schlieren images of shock structure in the internal flow and wall pressure (pw) distributions were obtained from the experiments. A significant enhancement in vorticity in the symmetry plane immediately downstream of the un-swept ramp with surface V-groove (semi-groove angles between 70° and 80°) over the plain un-swept and swept ramp configurations (without groove) was observed from the numerical computations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
13.60%
发文量
536
审稿时长
4.8 months
期刊介绍: The Journal of the Brazilian Society of Mechanical Sciences and Engineering publishes manuscripts on research, development and design related to science and technology in Mechanical Engineering. It is an interdisciplinary journal with interfaces to other branches of Engineering, as well as with Physics and Applied Mathematics. The Journal accepts manuscripts in four different formats: Full Length Articles, Review Articles, Book Reviews and Letters to the Editor. Interfaces with other branches of engineering, along with physics, applied mathematics and more Presents manuscripts on research, development and design related to science and technology in mechanical engineering.
期刊最新文献
Bio-inspired thin-walled energy absorber adapted from the xylem structure for enhanced vehicle safety Urban mobile robot routing using fast search random tree method (RRT) in obstacle environments Failure behavior study of repaired bismaleimide resin matrix composite laminates with considering repairing process Study on material removal and process optimization of composite material curved shell components robot grinding under flexible contact mode Investigations of injector deposits formation in a GDI flex-fuel engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1