使用加权随机标记的点聚类分析

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-09-10 DOI:10.1007/s10109-024-00447-y
Yukio Sadahiro, Ikuho Yamada
{"title":"使用加权随机标记的点聚类分析","authors":"Yukio Sadahiro, Ikuho Yamada","doi":"10.1007/s10109-024-00447-y","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a new method of point cluster analysis. There are at least three important points that we need to consider in the evaluation of point clusters. The first is spatial inhomogeneity, i.e., the inhomogeneity of locations where points can be located. The second is aspatial inhomogeneity, which indicates the inhomogeneity of point characteristics. The third is an explicit representation of the geographic scale of analysis. This paper proposes a method that considers these points in a statistical framework. We develop two measures of point clusters: local and global. The former permits us to discuss the spatial variation in point clusters, while the latter indicates the global tendency of point clusters. To test the method’s validity, this paper applies it to the analysis of hypothetical and real datasets. The results supported the soundness of the proposed method.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Point cluster analysis using weighted random labeling\",\"authors\":\"Yukio Sadahiro, Ikuho Yamada\",\"doi\":\"10.1007/s10109-024-00447-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes a new method of point cluster analysis. There are at least three important points that we need to consider in the evaluation of point clusters. The first is spatial inhomogeneity, i.e., the inhomogeneity of locations where points can be located. The second is aspatial inhomogeneity, which indicates the inhomogeneity of point characteristics. The third is an explicit representation of the geographic scale of analysis. This paper proposes a method that considers these points in a statistical framework. We develop two measures of point clusters: local and global. The former permits us to discuss the spatial variation in point clusters, while the latter indicates the global tendency of point clusters. To test the method’s validity, this paper applies it to the analysis of hypothetical and real datasets. The results supported the soundness of the proposed method.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10109-024-00447-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10109-024-00447-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的点聚类分析方法。在评估点聚类时,我们至少需要考虑三个要点。首先是空间不均匀性,即点所在位置的不均匀性。第二是空间不均匀性,即点特征的不均匀性。第三种是明确表示分析的地理尺度。本文提出了一种在统计框架下考虑这些点的方法。我们开发了两种测量点集群的方法:局部集群和全局集群。前者允许我们讨论点群的空间变化,后者则表明点群的全球趋势。为了检验该方法的有效性,本文将其应用于假设数据集和真实数据集的分析。结果证明了所提方法的合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Point cluster analysis using weighted random labeling

This paper proposes a new method of point cluster analysis. There are at least three important points that we need to consider in the evaluation of point clusters. The first is spatial inhomogeneity, i.e., the inhomogeneity of locations where points can be located. The second is aspatial inhomogeneity, which indicates the inhomogeneity of point characteristics. The third is an explicit representation of the geographic scale of analysis. This paper proposes a method that considers these points in a statistical framework. We develop two measures of point clusters: local and global. The former permits us to discuss the spatial variation in point clusters, while the latter indicates the global tendency of point clusters. To test the method’s validity, this paper applies it to the analysis of hypothetical and real datasets. The results supported the soundness of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1