海面无线传感器网络中基于多策略麻雀算法的 DV-Hop 定位算法校正

IF 2.1 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Wireless Networks Pub Date : 2024-09-10 DOI:10.1007/s11276-024-03827-w
Lei Zhang, Yujing Deng, Jia Fu, Lei Li, Jinhua Hu, Kangjian Di
{"title":"海面无线传感器网络中基于多策略麻雀算法的 DV-Hop 定位算法校正","authors":"Lei Zhang, Yujing Deng, Jia Fu, Lei Li, Jinhua Hu, Kangjian Di","doi":"10.1007/s11276-024-03827-w","DOIUrl":null,"url":null,"abstract":"<p>Sea surface sensor node localization accuracy is often hindered by seawater flow, while sea storms affect the transmission of radio signals. To improve the localization accuracy of the Distance Vector-Hop (DV-Hop) algorithm in Sea surface wireless sensor networks, we propose a DV-Hop localization algorithm enhanced through a multi-strategy sparrow search algorithm. The sea surface communication model is established, with drones as sink nodes, and the number of hops between nodes in the Sea Surface network is subdivided using non-uniform communication radii. Then, the average hop distance of the node is corrected by combining the weighted minimum mean square error and the cosine theorem. Finally, the calculated localization error is used as the fitness function. The localization of unknown nodes is initialized using the elite reversal strategy, and the Harris Hawk optimization method combined with the differential evolution algorithm is used to update the localization of the sparrow population discoverer to improve the population diversity. In the simulation experiments, the effectiveness of our algorithm is verified in anisotropic topologies. After that, we compared DV-Hop, Sparrow Search Algorithm for Optimizing DV-Hop (SSA-DV-Hop), Whale Optimization Algorithm for Optimizing DV-Hop (WOA-DV-Hop), and Harris Hawk Optimization Algorithm for Optimizing DV-Hop (HHO-DV-Hop) with our algorithm to verify the accuracy of the algorithm. The results show that, across various communication radii, the average localization error exhibited a reduction of 66.91% in comparison to DV-Hop. In addition, in different scenarios with different numbers of beacon nodes, the average localization error decreased by 66.78% compared to DV-Hop. Therefore, the proposed algorithm can effectively improve localization accuracy.</p>","PeriodicalId":23750,"journal":{"name":"Wireless Networks","volume":"419 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A DV-Hop localization algorithm corrected based on multi-strategy sparrow algorithm in sea-surface wireless sensor networks\",\"authors\":\"Lei Zhang, Yujing Deng, Jia Fu, Lei Li, Jinhua Hu, Kangjian Di\",\"doi\":\"10.1007/s11276-024-03827-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sea surface sensor node localization accuracy is often hindered by seawater flow, while sea storms affect the transmission of radio signals. To improve the localization accuracy of the Distance Vector-Hop (DV-Hop) algorithm in Sea surface wireless sensor networks, we propose a DV-Hop localization algorithm enhanced through a multi-strategy sparrow search algorithm. The sea surface communication model is established, with drones as sink nodes, and the number of hops between nodes in the Sea Surface network is subdivided using non-uniform communication radii. Then, the average hop distance of the node is corrected by combining the weighted minimum mean square error and the cosine theorem. Finally, the calculated localization error is used as the fitness function. The localization of unknown nodes is initialized using the elite reversal strategy, and the Harris Hawk optimization method combined with the differential evolution algorithm is used to update the localization of the sparrow population discoverer to improve the population diversity. In the simulation experiments, the effectiveness of our algorithm is verified in anisotropic topologies. After that, we compared DV-Hop, Sparrow Search Algorithm for Optimizing DV-Hop (SSA-DV-Hop), Whale Optimization Algorithm for Optimizing DV-Hop (WOA-DV-Hop), and Harris Hawk Optimization Algorithm for Optimizing DV-Hop (HHO-DV-Hop) with our algorithm to verify the accuracy of the algorithm. The results show that, across various communication radii, the average localization error exhibited a reduction of 66.91% in comparison to DV-Hop. In addition, in different scenarios with different numbers of beacon nodes, the average localization error decreased by 66.78% compared to DV-Hop. Therefore, the proposed algorithm can effectively improve localization accuracy.</p>\",\"PeriodicalId\":23750,\"journal\":{\"name\":\"Wireless Networks\",\"volume\":\"419 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wireless Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11276-024-03827-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11276-024-03827-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

海面传感器节点的定位精度通常会受到海水流动的影响,而海上风暴则会影响无线电信号的传输。为了提高海面无线传感器网络中距离矢量-跳(DV-Hop)算法的定位精度,我们提出了一种通过多策略麻雀搜索算法增强的 DV-Hop 定位算法。建立以无人机为汇节点的海面通信模型,利用非均匀通信半径细分海面网络中节点间的跳数。然后,结合加权最小均方误差和余弦定理修正节点的平均跳距。最后,将计算出的定位误差作为拟合函数。利用精英反转策略初始化未知节点的定位,并采用 Harris Hawk 优化方法结合差分进化算法更新麻雀种群发现者的定位,以提高种群多样性。在仿真实验中,我们验证了算法在各向异性拓扑中的有效性。之后,我们将 DV-Hop、优化 DV-Hop 的麻雀搜索算法(SSA-DV-Hop)、优化 DV-Hop 的鲸鱼优化算法(WOA-DV-Hop)和优化 DV-Hop 的哈里斯鹰优化算法(HHO-DV-Hop)与我们的算法进行了比较,以验证算法的准确性。结果表明,在不同的通信半径下,平均定位误差比 DV-Hop 降低了 66.91%。此外,在信标节点数量不同的情况下,平均定位误差比 DV-Hop 降低了 66.78%。因此,所提出的算法能有效提高定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A DV-Hop localization algorithm corrected based on multi-strategy sparrow algorithm in sea-surface wireless sensor networks

Sea surface sensor node localization accuracy is often hindered by seawater flow, while sea storms affect the transmission of radio signals. To improve the localization accuracy of the Distance Vector-Hop (DV-Hop) algorithm in Sea surface wireless sensor networks, we propose a DV-Hop localization algorithm enhanced through a multi-strategy sparrow search algorithm. The sea surface communication model is established, with drones as sink nodes, and the number of hops between nodes in the Sea Surface network is subdivided using non-uniform communication radii. Then, the average hop distance of the node is corrected by combining the weighted minimum mean square error and the cosine theorem. Finally, the calculated localization error is used as the fitness function. The localization of unknown nodes is initialized using the elite reversal strategy, and the Harris Hawk optimization method combined with the differential evolution algorithm is used to update the localization of the sparrow population discoverer to improve the population diversity. In the simulation experiments, the effectiveness of our algorithm is verified in anisotropic topologies. After that, we compared DV-Hop, Sparrow Search Algorithm for Optimizing DV-Hop (SSA-DV-Hop), Whale Optimization Algorithm for Optimizing DV-Hop (WOA-DV-Hop), and Harris Hawk Optimization Algorithm for Optimizing DV-Hop (HHO-DV-Hop) with our algorithm to verify the accuracy of the algorithm. The results show that, across various communication radii, the average localization error exhibited a reduction of 66.91% in comparison to DV-Hop. In addition, in different scenarios with different numbers of beacon nodes, the average localization error decreased by 66.78% compared to DV-Hop. Therefore, the proposed algorithm can effectively improve localization accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wireless Networks
Wireless Networks 工程技术-电信学
CiteScore
7.70
自引率
3.30%
发文量
314
审稿时长
5.5 months
期刊介绍: The wireless communication revolution is bringing fundamental changes to data networking, telecommunication, and is making integrated networks a reality. By freeing the user from the cord, personal communications networks, wireless LAN''s, mobile radio networks and cellular systems, harbor the promise of fully distributed mobile computing and communications, any time, anywhere. Focusing on the networking and user aspects of the field, Wireless Networks provides a global forum for archival value contributions documenting these fast growing areas of interest. The journal publishes refereed articles dealing with research, experience and management issues of wireless networks. Its aim is to allow the reader to benefit from experience, problems and solutions described.
期刊最新文献
An EEG signal-based music treatment system for autistic children using edge computing devices A DV-Hop localization algorithm corrected based on multi-strategy sparrow algorithm in sea-surface wireless sensor networks Multi-Layer Collaborative Federated Learning architecture for 6G Open RAN Cloud-edge collaboration-based task offloading strategy in railway IoT for intelligent detection Exploiting data transmission for route discoveries in mobile ad hoc networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1