利用纤维状二氧化硅钛和 Ti3AlC2 催化剂增强可见光光催化降解有机污染物,实现可持续废水处理

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY New Journal of Chemistry Pub Date : 2024-09-13 DOI:10.1039/d4nj03277b
Samia ., usman malick, Ahmed I. Osman, Khurram Imran Khan, faiq saeed, yilen zeng, Martin Motola, Hai Tao Dai
{"title":"利用纤维状二氧化硅钛和 Ti3AlC2 催化剂增强可见光光催化降解有机污染物,实现可持续废水处理","authors":"Samia ., usman malick, Ahmed I. Osman, Khurram Imran Khan, faiq saeed, yilen zeng, Martin Motola, Hai Tao Dai","doi":"10.1039/d4nj03277b","DOIUrl":null,"url":null,"abstract":"Visible light photocatalysis offers a green and sustainable approach to wastewater treatment and environmental remediation. This study focuses on the synthesis of Fibrous Silica Titania (FST) via a green method and comprehensively evaluates its photocatalytic performance compared with Ti3AlC2 powders. X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed superior crystallinity and unique lamellar structures in FST, contributing to its enhanced photocatalytic activity. The FST catalyst achieved remarkable degradation efficiencies of 93% for MB and 96% for Rhodamine B (RB) under visible light, outperforming the bare Ti3AlC2 powder. This promising performance is attributed to FST's narrow band gap (~2.98 eV), high surface area, and minimal photogenerated charge carrier recombination. Kinetic studies showed excellent agreement with pseudo-first-order kinetics, with R² values of 0.9801 and 0.988 for MB and RB, respectively. Reusability tests demonstrated sustained efficiency, with degradation rates remaining above 80% after four cycles. GC-MS analysis identified intermediates formed during photocatalytic degradation, ultimately converting them into harmless products, i.e., CO2 and H2O. These findings highlight FST as an economical, sustainable, and efficient photocatalyst for organic pollutant degradation compared to Ti3AlC2.","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Visible-Light Photocatalytic Degradation of Organic Pollutants Using Fibrous Silica Titania and Ti3AlC2 Catalysts for Sustainable Wastewater Treatment\",\"authors\":\"Samia ., usman malick, Ahmed I. Osman, Khurram Imran Khan, faiq saeed, yilen zeng, Martin Motola, Hai Tao Dai\",\"doi\":\"10.1039/d4nj03277b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visible light photocatalysis offers a green and sustainable approach to wastewater treatment and environmental remediation. This study focuses on the synthesis of Fibrous Silica Titania (FST) via a green method and comprehensively evaluates its photocatalytic performance compared with Ti3AlC2 powders. X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed superior crystallinity and unique lamellar structures in FST, contributing to its enhanced photocatalytic activity. The FST catalyst achieved remarkable degradation efficiencies of 93% for MB and 96% for Rhodamine B (RB) under visible light, outperforming the bare Ti3AlC2 powder. This promising performance is attributed to FST's narrow band gap (~2.98 eV), high surface area, and minimal photogenerated charge carrier recombination. Kinetic studies showed excellent agreement with pseudo-first-order kinetics, with R² values of 0.9801 and 0.988 for MB and RB, respectively. Reusability tests demonstrated sustained efficiency, with degradation rates remaining above 80% after four cycles. GC-MS analysis identified intermediates formed during photocatalytic degradation, ultimately converting them into harmless products, i.e., CO2 and H2O. These findings highlight FST as an economical, sustainable, and efficient photocatalyst for organic pollutant degradation compared to Ti3AlC2.\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4nj03277b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4nj03277b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

可见光光催化技术为废水处理和环境修复提供了一种绿色、可持续的方法。本研究的重点是通过绿色方法合成纤维状硅钛尼亚(FST),并全面评估其与 Ti3AlC2 粉末相比的光催化性能。X 射线衍射(XRD)和扫描电子显微镜(SEM)显示,FST 具有优异的结晶度和独特的片层结构,有助于提高其光催化活性。在可见光下,FST 催化剂对甲基溴和罗丹明 B (RB) 的降解效率分别达到 93% 和 96%,优于裸 Ti3AlC2 粉末。这种良好的性能归功于 FST 的窄带隙(~2.98 eV)、高比表面积和最小的光生电荷载流子重组。动力学研究表明,MB 和 RB 与伪一阶动力学非常吻合,R² 值分别为 0.9801 和 0.988。可重复使用性测试表明,降解率在四个周期后仍保持在 80% 以上,具有持续的效率。气相色谱-质谱分析确定了光催化降解过程中形成的中间产物,最终将它们转化为无害产物,即 CO2 和 H2O。与 Ti3AlC2 相比,这些发现突出表明 FST 是一种经济、可持续和高效的有机污染物降解光催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced Visible-Light Photocatalytic Degradation of Organic Pollutants Using Fibrous Silica Titania and Ti3AlC2 Catalysts for Sustainable Wastewater Treatment
Visible light photocatalysis offers a green and sustainable approach to wastewater treatment and environmental remediation. This study focuses on the synthesis of Fibrous Silica Titania (FST) via a green method and comprehensively evaluates its photocatalytic performance compared with Ti3AlC2 powders. X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed superior crystallinity and unique lamellar structures in FST, contributing to its enhanced photocatalytic activity. The FST catalyst achieved remarkable degradation efficiencies of 93% for MB and 96% for Rhodamine B (RB) under visible light, outperforming the bare Ti3AlC2 powder. This promising performance is attributed to FST's narrow band gap (~2.98 eV), high surface area, and minimal photogenerated charge carrier recombination. Kinetic studies showed excellent agreement with pseudo-first-order kinetics, with R² values of 0.9801 and 0.988 for MB and RB, respectively. Reusability tests demonstrated sustained efficiency, with degradation rates remaining above 80% after four cycles. GC-MS analysis identified intermediates formed during photocatalytic degradation, ultimately converting them into harmless products, i.e., CO2 and H2O. These findings highlight FST as an economical, sustainable, and efficient photocatalyst for organic pollutant degradation compared to Ti3AlC2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
期刊最新文献
Back cover Enhanced Visible-Light Photocatalytic Degradation of Organic Pollutants Using Fibrous Silica Titania and Ti3AlC2 Catalysts for Sustainable Wastewater Treatment Investigating the extraction performance and mechanism of a multifunctional thiourea molecule for the effective removal of Ag(I) from aqueous solutions Ionic Liquid Induced Aggregation Behavior of Kryptocyanine Dye High-efficiency fluoride removal using hierarchical flower-like magnesium oxide: Adsorption characteristics and mechanistic insights
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1