原位观测带有二氧化钛薄膜的商用纯钛板的滑动变形

IF 1.6 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Isij International Pub Date : 2024-09-11 DOI:10.2355/isijinternational.isijint-2024-090
Ryotaro Miyoshi, Genki Tsukamoto
{"title":"原位观测带有二氧化钛薄膜的商用纯钛板的滑动变形","authors":"Ryotaro Miyoshi, Genki Tsukamoto","doi":"10.2355/isijinternational.isijint-2024-090","DOIUrl":null,"url":null,"abstract":"</p><p>To investigate the factors that cause variations in the friction coefficients of commercially pure titanium sheets with titanium oxide films, the sliding deformation during ball-on-block sliding tests was observed in situ and compared with electron backscatter diffraction analyses of the same regions. Under a vertical load of 0.1 N, the friction coefficient was stable at a low level of approximately 0.12. By contrast, at 0.5 N, the friction coefficient fluctuated widely between 0.20 and 0.80. At 2.0 and 4.0 N, the friction coefficient was stable again at a high level of approximately 0.30 and 0.40, respectively. The fluctuation in friction coefficient at a vertical load of 0.5 N was investigated further based on the Taylor factor for the uniaxial compression of the titanium grains directly beneath the contact point. Notably, the friction coefficient was negatively correlated with the Taylor factor of the underlying grains. Thus, it can be presumed that the plowing term of the friction coefficient increases as the compressive strain on titanium increases. At vertical loads of 2.0 and 4.0 N, the contact area is larger, so the ball is always in contact with multiple grains. Thus, the influence of the Taylor factor of individual grains can be assumed to be averaged, thereby reducing the variation in friction coefficient.</p>\n<p></p>","PeriodicalId":14619,"journal":{"name":"Isij International","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Observation of Sliding Deformation in Commercially Pure Titanium Sheet with TiO2 Film\",\"authors\":\"Ryotaro Miyoshi, Genki Tsukamoto\",\"doi\":\"10.2355/isijinternational.isijint-2024-090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>To investigate the factors that cause variations in the friction coefficients of commercially pure titanium sheets with titanium oxide films, the sliding deformation during ball-on-block sliding tests was observed in situ and compared with electron backscatter diffraction analyses of the same regions. Under a vertical load of 0.1 N, the friction coefficient was stable at a low level of approximately 0.12. By contrast, at 0.5 N, the friction coefficient fluctuated widely between 0.20 and 0.80. At 2.0 and 4.0 N, the friction coefficient was stable again at a high level of approximately 0.30 and 0.40, respectively. The fluctuation in friction coefficient at a vertical load of 0.5 N was investigated further based on the Taylor factor for the uniaxial compression of the titanium grains directly beneath the contact point. Notably, the friction coefficient was negatively correlated with the Taylor factor of the underlying grains. Thus, it can be presumed that the plowing term of the friction coefficient increases as the compressive strain on titanium increases. At vertical loads of 2.0 and 4.0 N, the contact area is larger, so the ball is always in contact with multiple grains. Thus, the influence of the Taylor factor of individual grains can be assumed to be averaged, thereby reducing the variation in friction coefficient.</p>\\n<p></p>\",\"PeriodicalId\":14619,\"journal\":{\"name\":\"Isij International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Isij International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2355/isijinternational.isijint-2024-090\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Isij International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2355/isijinternational.isijint-2024-090","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

为了研究导致带有氧化钛薄膜的市售纯钛板摩擦系数变化的因素,我们现场观察了球对块滑动试验中的滑动变形,并与相同区域的电子反向散射衍射分析进行了比较。在 0.1 N 的垂直负载下,摩擦系数稳定在约 0.12 的较低水平。相比之下,在 0.5 N 时,摩擦系数在 0.20 和 0.80 之间大幅波动。在 2.0 和 4.0 N 时,摩擦系数分别稳定在约 0.30 和 0.40 的较高水平。根据接触点正下方钛晶粒单轴压缩的泰勒系数,进一步研究了 0.5 N 垂直载荷下摩擦系数的波动情况。值得注意的是,摩擦系数与下层晶粒的泰勒系数呈负相关。因此可以推测,随着钛的压缩应变的增加,摩擦系数的耕作项也会增加。在垂直载荷为 2.0 和 4.0 N 时,接触面积较大,因此球始终与多个晶粒接触。因此,可以假定单个晶粒的泰勒系数的影响被平均化,从而减少摩擦系数的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In Situ Observation of Sliding Deformation in Commercially Pure Titanium Sheet with TiO2 Film

To investigate the factors that cause variations in the friction coefficients of commercially pure titanium sheets with titanium oxide films, the sliding deformation during ball-on-block sliding tests was observed in situ and compared with electron backscatter diffraction analyses of the same regions. Under a vertical load of 0.1 N, the friction coefficient was stable at a low level of approximately 0.12. By contrast, at 0.5 N, the friction coefficient fluctuated widely between 0.20 and 0.80. At 2.0 and 4.0 N, the friction coefficient was stable again at a high level of approximately 0.30 and 0.40, respectively. The fluctuation in friction coefficient at a vertical load of 0.5 N was investigated further based on the Taylor factor for the uniaxial compression of the titanium grains directly beneath the contact point. Notably, the friction coefficient was negatively correlated with the Taylor factor of the underlying grains. Thus, it can be presumed that the plowing term of the friction coefficient increases as the compressive strain on titanium increases. At vertical loads of 2.0 and 4.0 N, the contact area is larger, so the ball is always in contact with multiple grains. Thus, the influence of the Taylor factor of individual grains can be assumed to be averaged, thereby reducing the variation in friction coefficient.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Isij International
Isij International 工程技术-冶金工程
CiteScore
3.40
自引率
16.70%
发文量
268
审稿时长
2.6 months
期刊介绍: The journal provides an international medium for the publication of fundamental and technological aspects of the properties, structure, characterization and modeling, processing, fabrication, and environmental issues of iron and steel, along with related engineering materials.
期刊最新文献
Ductility loss of a metastable austenitic stainless steel and its TIG weldment due to hydrogen embrittlement at low temperatures considering the effect of pre-strain at 4K Iterative Convergence for Solving the Exit Plastic Zone and Friction Coefficient Model of Ultra-thin Strip Rolling Force Ductile Fracture Prediction During Metal Forming Using an Ellipsoidal Void Model and Some Other Models Atmospheric Corrosion Behavior of Ni-Advanced Weathering Steels in High-Chloride Environment: Effect of Ni on Corrosion Morphology Arc-plasma-assisted laser-induced breakdown spectroscopy (AP-LIBS): A Study on Signal Enhancement and Spatiotemporal Distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1