银纳米粒子诱导神经毒性损伤的分子机制及其神经毒性研究的新视角:重要综述

IF 7.6 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Pollution Pub Date : 2024-09-10 DOI:10.1016/j.envpol.2024.124934
{"title":"银纳米粒子诱导神经毒性损伤的分子机制及其神经毒性研究的新视角:重要综述","authors":"","doi":"10.1016/j.envpol.2024.124934","DOIUrl":null,"url":null,"abstract":"<div><p>Silver nanoparticles (AgNPs) garnered significant attention and applications in the field of nanotechnology due to their unique physicochemical properties. However, with the increasing exposure of AgNPs in the environment and biological systems, concerns about their potential neurotoxicity have also risen. Recent studies on the neurotoxic effects and mechanisms of AgNPs have often relied on traditional toxicological research methods and perspectives. This reliance has limited the extrapolation of these findings to the human brain environment and hindered a deep understanding of the neurotoxicity of AgNPs. This review first outlines the molecular mechanisms of AgNPs-induced neurotoxic injury from a traditional research perspective, identifying oxidative stress, inflammatory responses, and autophagy disorders as key areas of current research. Related molecular signaling pathways, including the nuclear transcription factor-κB (NF-κB) signaling pathway, the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, and the calcium signaling pathway, have been implicated in the neurotoxic injury process induced by AgNPs. Subsequently, we elucidated the unique advantages of the 3D brain organoids applied to the neurotoxicity study of AgNPs by drawing on relevant studies in the same field. We also emphasize that establishing a standardized 3D brain organoids construction platform is a crucial prerequisite for its widespread application. Furthermore, we suggest that future studies should explore the neurotoxicity mechanisms of AgNPs through the lenses of “adaptive homeostasis” and “structure-activity relationship analysis”. In conclusion, the neurotoxicity of AgNPs should be comprehensively evaluated by integrating new research techniques and perspectives, ultimately allowing these nanoparticles to better serve human society.</p></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular mechanisms of silver nanoparticle-induced neurotoxic injury and new perspectives for its neurotoxicity studies: A critical review\",\"authors\":\"\",\"doi\":\"10.1016/j.envpol.2024.124934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Silver nanoparticles (AgNPs) garnered significant attention and applications in the field of nanotechnology due to their unique physicochemical properties. However, with the increasing exposure of AgNPs in the environment and biological systems, concerns about their potential neurotoxicity have also risen. Recent studies on the neurotoxic effects and mechanisms of AgNPs have often relied on traditional toxicological research methods and perspectives. This reliance has limited the extrapolation of these findings to the human brain environment and hindered a deep understanding of the neurotoxicity of AgNPs. This review first outlines the molecular mechanisms of AgNPs-induced neurotoxic injury from a traditional research perspective, identifying oxidative stress, inflammatory responses, and autophagy disorders as key areas of current research. Related molecular signaling pathways, including the nuclear transcription factor-κB (NF-κB) signaling pathway, the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, and the calcium signaling pathway, have been implicated in the neurotoxic injury process induced by AgNPs. Subsequently, we elucidated the unique advantages of the 3D brain organoids applied to the neurotoxicity study of AgNPs by drawing on relevant studies in the same field. We also emphasize that establishing a standardized 3D brain organoids construction platform is a crucial prerequisite for its widespread application. Furthermore, we suggest that future studies should explore the neurotoxicity mechanisms of AgNPs through the lenses of “adaptive homeostasis” and “structure-activity relationship analysis”. In conclusion, the neurotoxicity of AgNPs should be comprehensively evaluated by integrating new research techniques and perspectives, ultimately allowing these nanoparticles to better serve human society.</p></div>\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0269749124016488\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749124016488","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

银纳米粒子(AgNPs)因其独特的物理化学特性在纳米技术领域获得了极大的关注和应用。然而,随着 AgNPs 在环境和生物系统中的暴露量不断增加,人们对其潜在神经毒性的担忧也随之上升。近期有关 AgNPs 神经毒性效应和机制的研究往往依赖于传统的毒理学研究方法和视角。这种依赖性限制了将这些研究结果推广到人脑环境中,阻碍了对 AgNPs 神经毒性的深入了解。本综述首先从传统研究角度概述了 AgNPs 诱发神经毒性损伤的分子机制,指出氧化应激、炎症反应和自噬紊乱是当前研究的关键领域。相关的分子信号通路,包括核转录因子-κB(NF-κB)信号通路、核因子红细胞2相关因子2(Nrf2)信号通路和钙信号通路,都与AgNPs诱导的神经毒性损伤过程有关。随后,我们借鉴该领域的相关研究,阐明了三维脑器官组织应用于 AgNPs 神经毒性研究的独特优势。我们还强调,建立标准化的三维脑器官构建平台是其广泛应用的重要前提。此外,我们建议今后的研究应从 "适应性平衡 "和 "结构-活性关系分析 "的角度来探讨 AgNPs 的神经毒性机制。总之,应结合新的研究技术和视角,全面评估 AgNPs 的神经毒性,最终让这些纳米粒子更好地服务于人类社会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular mechanisms of silver nanoparticle-induced neurotoxic injury and new perspectives for its neurotoxicity studies: A critical review

Silver nanoparticles (AgNPs) garnered significant attention and applications in the field of nanotechnology due to their unique physicochemical properties. However, with the increasing exposure of AgNPs in the environment and biological systems, concerns about their potential neurotoxicity have also risen. Recent studies on the neurotoxic effects and mechanisms of AgNPs have often relied on traditional toxicological research methods and perspectives. This reliance has limited the extrapolation of these findings to the human brain environment and hindered a deep understanding of the neurotoxicity of AgNPs. This review first outlines the molecular mechanisms of AgNPs-induced neurotoxic injury from a traditional research perspective, identifying oxidative stress, inflammatory responses, and autophagy disorders as key areas of current research. Related molecular signaling pathways, including the nuclear transcription factor-κB (NF-κB) signaling pathway, the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, and the calcium signaling pathway, have been implicated in the neurotoxic injury process induced by AgNPs. Subsequently, we elucidated the unique advantages of the 3D brain organoids applied to the neurotoxicity study of AgNPs by drawing on relevant studies in the same field. We also emphasize that establishing a standardized 3D brain organoids construction platform is a crucial prerequisite for its widespread application. Furthermore, we suggest that future studies should explore the neurotoxicity mechanisms of AgNPs through the lenses of “adaptive homeostasis” and “structure-activity relationship analysis”. In conclusion, the neurotoxicity of AgNPs should be comprehensively evaluated by integrating new research techniques and perspectives, ultimately allowing these nanoparticles to better serve human society.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Pollution
Environmental Pollution 环境科学-环境科学
CiteScore
16.00
自引率
6.70%
发文量
2082
审稿时长
2.9 months
期刊介绍: Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health. Subject areas include, but are not limited to: • Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies; • Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change; • Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects; • Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects; • Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest; • New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.
期刊最新文献
Corrigendum to 'Factors influencing microplastic abundances in the sediments of a seagrass-dominated tropical atoll' Environmental Pollution (2024) 357, 124483. Corrigendum to ‘Estimates of the global burden of cancer-related deaths attributable to residential exposure to petrochemical industrial complexes from 2020 to 2040’ [Environ. Pollut. 350 (2024) 123955] Persistent organic pollutants and metabolic diseases: From the perspective of lipid droplets Unraveling soil geochemical, geophysical, and microbial determinants of the vertical distribution of organic phosphorus pesticide pollutants Vertical distribution of aerosols and association with atmospheric boundary layer structures during regional aerosol transport over central China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1