nifty-ls:使用非均匀 FFT 快速准确地绘制 Lomb-Scargle 周期图

Lehman H. Garrison, Dan Foreman-Mackey, Yu-hsuan Shih, Alex Barnett
{"title":"nifty-ls:使用非均匀 FFT 快速准确地绘制 Lomb-Scargle 周期图","authors":"Lehman H. Garrison, Dan Foreman-Mackey, Yu-hsuan Shih, Alex Barnett","doi":"arxiv-2409.08090","DOIUrl":null,"url":null,"abstract":"We present nifty-ls, a software package for fast and accurate evaluation of\nthe Lomb-Scargle periodogram. nifty-ls leverages the fact that Lomb-Scargle can\nbe computed using a non-uniform FFT (NUFFT), which we evaluate with the\nFlatiron Institute NUFFT package (finufft). This approach achieves a many-fold\nspeedup over the Press & Rybicki (1989) method as implemented in Astropy and is\nsimultaneously many orders of magnitude more accurate. nifty-ls also supports\nfast evaluation on GPUs via CUDA and integrates with the Astropy Lomb-Scargle\ninterface. nifty-ls is publicly available as open-source software.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"nifty-ls: Fast and Accurate Lomb-Scargle Periodograms Using a Non-Uniform FFT\",\"authors\":\"Lehman H. Garrison, Dan Foreman-Mackey, Yu-hsuan Shih, Alex Barnett\",\"doi\":\"arxiv-2409.08090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present nifty-ls, a software package for fast and accurate evaluation of\\nthe Lomb-Scargle periodogram. nifty-ls leverages the fact that Lomb-Scargle can\\nbe computed using a non-uniform FFT (NUFFT), which we evaluate with the\\nFlatiron Institute NUFFT package (finufft). This approach achieves a many-fold\\nspeedup over the Press & Rybicki (1989) method as implemented in Astropy and is\\nsimultaneously many orders of magnitude more accurate. nifty-ls also supports\\nfast evaluation on GPUs via CUDA and integrates with the Astropy Lomb-Scargle\\ninterface. nifty-ls is publicly available as open-source software.\",\"PeriodicalId\":501163,\"journal\":{\"name\":\"arXiv - PHYS - Instrumentation and Methods for Astrophysics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Instrumentation and Methods for Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

nifty-ls 利用非均匀 FFT(NUFFT)计算 Lomb-Scargle 周期图这一事实,我们使用 Flatiron 研究所的 NUFFT 软件包(finufft)对其进行了评估。nifty-ls 还支持通过 CUDA 在 GPU 上进行快速评估,并与 Astropy Lomb-Scargle 接口集成。nifty-ls 是公开的开源软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
nifty-ls: Fast and Accurate Lomb-Scargle Periodograms Using a Non-Uniform FFT
We present nifty-ls, a software package for fast and accurate evaluation of the Lomb-Scargle periodogram. nifty-ls leverages the fact that Lomb-Scargle can be computed using a non-uniform FFT (NUFFT), which we evaluate with the Flatiron Institute NUFFT package (finufft). This approach achieves a many-fold speedup over the Press & Rybicki (1989) method as implemented in Astropy and is simultaneously many orders of magnitude more accurate. nifty-ls also supports fast evaluation on GPUs via CUDA and integrates with the Astropy Lomb-Scargle interface. nifty-ls is publicly available as open-source software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bright unintended electromagnetic radiation from second-generation Starlink satellites Likelihood reconstruction of radio signals of neutrinos and cosmic rays An evaluation of source-blending impact on the calibration of SKA EoR experiments WALLABY Pilot Survey: HI source-finding with a machine learning framework Black Hole Accretion is all about Sub-Keplerian Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1