筛选碎片:使用无监督 ML 方法分析 SNR 群体的模式

F. BufanoINAF-Osservatorio Astrofisico di Catania, Italy, C. BordiuINAF-Osservatorio Astrofisico di Catania, Italy, T. CecconelloINAF-Osservatorio Astrofisico di Catania, Italy, M. MunariINAF-Osservatorio Astrofisico di Catania, Italy, A. HopkinsSchool of Mathematical and Physical Sciences, Australia, A. IngallineraINAF-Osservatorio Astrofisico di Catania, Italy, P. LetoINAF-Osservatorio Astrofisico di Catania, Italy, S. LoruINAF-Osservatorio Astrofisico di Catania, Italy, S. RiggiINAF-Osservatorio Astrofisico di Catania, Italy, E. SciaccaINAF-Osservatorio Astrofisico di Catania, Italy, G. VizzariUniversita degli Studi di Milano-Bicocca, Italy, A. De MarcoInstitute of Space Sciences and Astronomy, Malta, C. S. BuemiINAF-Osservatorio Astrofisico di Catania, Italy, F. CavallaroINAF-Osservatorio Astrofisico di Catania, Italy, C. TrigilioINAF-Osservatorio Astrofisico di Catania, Italy, G. UmanaINAF-Osservatorio Astrofisico di Catania, Italy
{"title":"筛选碎片:使用无监督 ML 方法分析 SNR 群体的模式","authors":"F. BufanoINAF-Osservatorio Astrofisico di Catania, Italy, C. BordiuINAF-Osservatorio Astrofisico di Catania, Italy, T. CecconelloINAF-Osservatorio Astrofisico di Catania, Italy, M. MunariINAF-Osservatorio Astrofisico di Catania, Italy, A. HopkinsSchool of Mathematical and Physical Sciences, Australia, A. IngallineraINAF-Osservatorio Astrofisico di Catania, Italy, P. LetoINAF-Osservatorio Astrofisico di Catania, Italy, S. LoruINAF-Osservatorio Astrofisico di Catania, Italy, S. RiggiINAF-Osservatorio Astrofisico di Catania, Italy, E. SciaccaINAF-Osservatorio Astrofisico di Catania, Italy, G. VizzariUniversita degli Studi di Milano-Bicocca, Italy, A. De MarcoInstitute of Space Sciences and Astronomy, Malta, C. S. BuemiINAF-Osservatorio Astrofisico di Catania, Italy, F. CavallaroINAF-Osservatorio Astrofisico di Catania, Italy, C. TrigilioINAF-Osservatorio Astrofisico di Catania, Italy, G. UmanaINAF-Osservatorio Astrofisico di Catania, Italy","doi":"arxiv-2409.06383","DOIUrl":null,"url":null,"abstract":"Supernova remnants (SNRs) carry vast amounts of mechanical and radiative\nenergy that heavily influence the structural, dynamical, and chemical evolution\nof galaxies. To this day, more than 300 SNRs have been discovered in the Milky\nWay, exhibiting a wide variety of observational features. However, existing\nclassification schemes are mainly based on their radio morphology. In this\nwork, we introduce a novel unsupervised deep learning pipeline to analyse a\nrepresentative subsample of the Galactic SNR population ($\\sim$ 50% of the\ntotal) with the aim of finding a connection between their multi-wavelength\nfeatures and their physical properties. The pipeline involves two stages: (1) a\nrepresentation learning stage, consisting of a convolutional autoencoder that\nfeeds on imagery from infrared and radio continuum surveys (WISE 22$\\mu$m,\nHi-GAL 70 $\\mu$m and SMGPS 30 cm) and produces a compact representation in a\nlower-dimensionality latent space; and (2) a clustering stage that seeks\nmeaningful clusters in the latent space that can be linked to the physical\nproperties of the SNRs and their surroundings. Our results suggest that this\napproach, when combined with an intermediate uniform manifold approximation and\nprojection (UMAP) reprojection of the autoencoded embeddings into a more\nclusterable manifold, enables us to find reliable clusters. Despite a large\nnumber of sources being classified as outliers, most clusters relate to the\npresence of distinctive features, such as the distribution of infrared\nemission, the presence of radio shells and pulsar wind nebulae, and the\nexistence of dust filaments.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sifting the debris: Patterns in the SNR population with unsupervised ML methods\",\"authors\":\"F. BufanoINAF-Osservatorio Astrofisico di Catania, Italy, C. BordiuINAF-Osservatorio Astrofisico di Catania, Italy, T. CecconelloINAF-Osservatorio Astrofisico di Catania, Italy, M. MunariINAF-Osservatorio Astrofisico di Catania, Italy, A. HopkinsSchool of Mathematical and Physical Sciences, Australia, A. IngallineraINAF-Osservatorio Astrofisico di Catania, Italy, P. LetoINAF-Osservatorio Astrofisico di Catania, Italy, S. LoruINAF-Osservatorio Astrofisico di Catania, Italy, S. RiggiINAF-Osservatorio Astrofisico di Catania, Italy, E. SciaccaINAF-Osservatorio Astrofisico di Catania, Italy, G. VizzariUniversita degli Studi di Milano-Bicocca, Italy, A. De MarcoInstitute of Space Sciences and Astronomy, Malta, C. S. BuemiINAF-Osservatorio Astrofisico di Catania, Italy, F. CavallaroINAF-Osservatorio Astrofisico di Catania, Italy, C. TrigilioINAF-Osservatorio Astrofisico di Catania, Italy, G. UmanaINAF-Osservatorio Astrofisico di Catania, Italy\",\"doi\":\"arxiv-2409.06383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supernova remnants (SNRs) carry vast amounts of mechanical and radiative\\nenergy that heavily influence the structural, dynamical, and chemical evolution\\nof galaxies. To this day, more than 300 SNRs have been discovered in the Milky\\nWay, exhibiting a wide variety of observational features. However, existing\\nclassification schemes are mainly based on their radio morphology. In this\\nwork, we introduce a novel unsupervised deep learning pipeline to analyse a\\nrepresentative subsample of the Galactic SNR population ($\\\\sim$ 50% of the\\ntotal) with the aim of finding a connection between their multi-wavelength\\nfeatures and their physical properties. The pipeline involves two stages: (1) a\\nrepresentation learning stage, consisting of a convolutional autoencoder that\\nfeeds on imagery from infrared and radio continuum surveys (WISE 22$\\\\mu$m,\\nHi-GAL 70 $\\\\mu$m and SMGPS 30 cm) and produces a compact representation in a\\nlower-dimensionality latent space; and (2) a clustering stage that seeks\\nmeaningful clusters in the latent space that can be linked to the physical\\nproperties of the SNRs and their surroundings. Our results suggest that this\\napproach, when combined with an intermediate uniform manifold approximation and\\nprojection (UMAP) reprojection of the autoencoded embeddings into a more\\nclusterable manifold, enables us to find reliable clusters. Despite a large\\nnumber of sources being classified as outliers, most clusters relate to the\\npresence of distinctive features, such as the distribution of infrared\\nemission, the presence of radio shells and pulsar wind nebulae, and the\\nexistence of dust filaments.\",\"PeriodicalId\":501163,\"journal\":{\"name\":\"arXiv - PHYS - Instrumentation and Methods for Astrophysics\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Instrumentation and Methods for Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超新星残骸(SNRs)携带着大量的机械能和辐射能,对星系的结构、动力学和化学演化产生了重大影响。迄今为止,银河系中已经发现了 300 多颗 SNR,它们呈现出各种各样的观测特征。然而,现有的分类方案主要基于它们的射电形态。在这项工作中,我们引入了一个新颖的无监督深度学习管道来分析银河SNR群体的代表性子样本(占总数的50%),目的是找到它们的多波长特征与其物理特性之间的联系。该管道包括两个阶段:(1)表征学习阶段,由一个卷积自动编码器组成,该编码器输入来自红外和射电连续面巡天(WISE 22 $\mu$m, Hi-GAL 70 $\mu$m 和 SMGPS 30 cm)的图像,并在低维度潜空间中产生一个紧凑的表征;(2)聚类阶段,在潜空间中寻找有意义的聚类,这些聚类可以与SNR及其周围环境的物理特性联系起来。我们的研究结果表明,如果将这种方法与中间的统一流形近似和投影(UMAP)相结合,将自动编码嵌入重投影到更易聚类的流形中,我们就能找到可靠的聚类。尽管有大量星源被归类为异常值,但大多数星团与存在的独特特征有关,如红外辐射的分布、射电壳和脉冲星风星云的存在以及尘丝的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sifting the debris: Patterns in the SNR population with unsupervised ML methods
Supernova remnants (SNRs) carry vast amounts of mechanical and radiative energy that heavily influence the structural, dynamical, and chemical evolution of galaxies. To this day, more than 300 SNRs have been discovered in the Milky Way, exhibiting a wide variety of observational features. However, existing classification schemes are mainly based on their radio morphology. In this work, we introduce a novel unsupervised deep learning pipeline to analyse a representative subsample of the Galactic SNR population ($\sim$ 50% of the total) with the aim of finding a connection between their multi-wavelength features and their physical properties. The pipeline involves two stages: (1) a representation learning stage, consisting of a convolutional autoencoder that feeds on imagery from infrared and radio continuum surveys (WISE 22$\mu$m, Hi-GAL 70 $\mu$m and SMGPS 30 cm) and produces a compact representation in a lower-dimensionality latent space; and (2) a clustering stage that seeks meaningful clusters in the latent space that can be linked to the physical properties of the SNRs and their surroundings. Our results suggest that this approach, when combined with an intermediate uniform manifold approximation and projection (UMAP) reprojection of the autoencoded embeddings into a more clusterable manifold, enables us to find reliable clusters. Despite a large number of sources being classified as outliers, most clusters relate to the presence of distinctive features, such as the distribution of infrared emission, the presence of radio shells and pulsar wind nebulae, and the existence of dust filaments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bright unintended electromagnetic radiation from second-generation Starlink satellites Likelihood reconstruction of radio signals of neutrinos and cosmic rays An evaluation of source-blending impact on the calibration of SKA EoR experiments WALLABY Pilot Survey: HI source-finding with a machine learning framework Black Hole Accretion is all about Sub-Keplerian Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1