加强天体信息学在跨学科科学中的杠杆作用

Massimo Brescia, Giuseppe Angora
{"title":"加强天体信息学在跨学科科学中的杠杆作用","authors":"Massimo Brescia, Giuseppe Angora","doi":"arxiv-2409.03425","DOIUrl":null,"url":null,"abstract":"Most domains of science are experiencing a paradigm shift due to the advent\nof a new generation of instruments and detectors which produce data and data\nstreams at an unprecedented rate. The scientific exploitation of these data,\nnamely Data Driven Discovery, requires interoperability, massive and optimal\nuse of Artificial Intelligence methods in all steps of the data acquisition,\nprocessing and analysis, the access to large and distributed computing HPC\nfacilities, the implementation and access to large simulations and\ninterdisciplinary skills that usually are not provided by standard academic\ncurricula. Furthermore, to cope with this data deluge, most communities have\nleveraged solutions and tools originally developed by large corporations for\npurposes other than scientific research and accepted compromises to adapt them\nto their specific needs. Through the presentation of several astrophysical use\ncases, we show how the Data Driven based solutions could represent the optimal\nplayground to achieve the multi-disciplinary methodological approach.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strengthening leverage of Astroinformatics in inter-disciplinary Science\",\"authors\":\"Massimo Brescia, Giuseppe Angora\",\"doi\":\"arxiv-2409.03425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most domains of science are experiencing a paradigm shift due to the advent\\nof a new generation of instruments and detectors which produce data and data\\nstreams at an unprecedented rate. The scientific exploitation of these data,\\nnamely Data Driven Discovery, requires interoperability, massive and optimal\\nuse of Artificial Intelligence methods in all steps of the data acquisition,\\nprocessing and analysis, the access to large and distributed computing HPC\\nfacilities, the implementation and access to large simulations and\\ninterdisciplinary skills that usually are not provided by standard academic\\ncurricula. Furthermore, to cope with this data deluge, most communities have\\nleveraged solutions and tools originally developed by large corporations for\\npurposes other than scientific research and accepted compromises to adapt them\\nto their specific needs. Through the presentation of several astrophysical use\\ncases, we show how the Data Driven based solutions could represent the optimal\\nplayground to achieve the multi-disciplinary methodological approach.\",\"PeriodicalId\":501163,\"journal\":{\"name\":\"arXiv - PHYS - Instrumentation and Methods for Astrophysics\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Instrumentation and Methods for Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于新一代仪器和探测器的出现,大多数科学领域正在经历一场范式转变,这些仪器和探测器以前所未有的速度产生数据和数据流。对这些数据的科学利用,即数据驱动发现,需要在数据采集、处理和分析的所有步骤中实现互操作性、大量和优化使用人工智能方法、访问大型分布式计算 HPC 设施、实施和访问大型模拟以及标准学术课程通常不提供的跨学科技能。此外,为了应对这一数据洪流,大多数社区都利用了最初由大公司为科学研究以外的目的而开发的解决方案和工具,并接受妥协以适应其特定需求。通过介绍几个天体物理学用例,我们展示了基于数据驱动的解决方案如何成为实现多学科方法论的最佳平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strengthening leverage of Astroinformatics in inter-disciplinary Science
Most domains of science are experiencing a paradigm shift due to the advent of a new generation of instruments and detectors which produce data and data streams at an unprecedented rate. The scientific exploitation of these data, namely Data Driven Discovery, requires interoperability, massive and optimal use of Artificial Intelligence methods in all steps of the data acquisition, processing and analysis, the access to large and distributed computing HPC facilities, the implementation and access to large simulations and interdisciplinary skills that usually are not provided by standard academic curricula. Furthermore, to cope with this data deluge, most communities have leveraged solutions and tools originally developed by large corporations for purposes other than scientific research and accepted compromises to adapt them to their specific needs. Through the presentation of several astrophysical use cases, we show how the Data Driven based solutions could represent the optimal playground to achieve the multi-disciplinary methodological approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bright unintended electromagnetic radiation from second-generation Starlink satellites Likelihood reconstruction of radio signals of neutrinos and cosmic rays An evaluation of source-blending impact on the calibration of SKA EoR experiments WALLABY Pilot Survey: HI source-finding with a machine learning framework Black Hole Accretion is all about Sub-Keplerian Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1