{"title":"基于稀疏网格的自适应频谱库普曼方法","authors":"Bian Li, Yue Yu, Xiu Yang","doi":"10.1137/23m1578292","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 5, Page A2925-A2950, October 2024. <br/> Abstract. The adaptive spectral Koopman (ASK) method was introduced to numerically solve autonomous dynamical systems that laid the foundation for numerous applications across different fields in science and engineering. Although ASK achieves high accuracy, it is computationally more expensive for multidimensional systems compared with conventional time integration schemes like Runge–Kutta. In this work, we combine the sparse grid and ASK to accelerate the computation for multidimensional systems. This sparse-grid-based ASK (SASK) method uses the Smolyak structure to construct multidimensional collocation points as well as associated polynomials that are used to approximate eigenfunctions of the Koopman operator of the system. In this way, the number of collocation points is reduced compared with using the tensor product rule. We demonstrate that SASK can be used to solve ordinary differential equations (ODEs) and partial differential equations (PDEs) based on their semidiscrete forms. Numerical experiments are illustrated to compare the performance of SASK and state-of-the-art ODE solvers.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Sparse-Grid-Based Adaptive Spectral Koopman Method\",\"authors\":\"Bian Li, Yue Yu, Xiu Yang\",\"doi\":\"10.1137/23m1578292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 5, Page A2925-A2950, October 2024. <br/> Abstract. The adaptive spectral Koopman (ASK) method was introduced to numerically solve autonomous dynamical systems that laid the foundation for numerous applications across different fields in science and engineering. Although ASK achieves high accuracy, it is computationally more expensive for multidimensional systems compared with conventional time integration schemes like Runge–Kutta. In this work, we combine the sparse grid and ASK to accelerate the computation for multidimensional systems. This sparse-grid-based ASK (SASK) method uses the Smolyak structure to construct multidimensional collocation points as well as associated polynomials that are used to approximate eigenfunctions of the Koopman operator of the system. In this way, the number of collocation points is reduced compared with using the tensor product rule. We demonstrate that SASK can be used to solve ordinary differential equations (ODEs) and partial differential equations (PDEs) based on their semidiscrete forms. Numerical experiments are illustrated to compare the performance of SASK and state-of-the-art ODE solvers.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1578292\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1578292","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
The Sparse-Grid-Based Adaptive Spectral Koopman Method
SIAM Journal on Scientific Computing, Volume 46, Issue 5, Page A2925-A2950, October 2024. Abstract. The adaptive spectral Koopman (ASK) method was introduced to numerically solve autonomous dynamical systems that laid the foundation for numerous applications across different fields in science and engineering. Although ASK achieves high accuracy, it is computationally more expensive for multidimensional systems compared with conventional time integration schemes like Runge–Kutta. In this work, we combine the sparse grid and ASK to accelerate the computation for multidimensional systems. This sparse-grid-based ASK (SASK) method uses the Smolyak structure to construct multidimensional collocation points as well as associated polynomials that are used to approximate eigenfunctions of the Koopman operator of the system. In this way, the number of collocation points is reduced compared with using the tensor product rule. We demonstrate that SASK can be used to solve ordinary differential equations (ODEs) and partial differential equations (PDEs) based on their semidiscrete forms. Numerical experiments are illustrated to compare the performance of SASK and state-of-the-art ODE solvers.