采用车架力观测器的智能车辆线控转向系统路感模拟方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-09-13 DOI:10.1007/s12239-024-00158-9
Leiyan Yu, Zihua Hu, Yongpeng Cai, Zeyu Hou, Yongjun Shi, Baogui Wu, Meilan Tian
{"title":"采用车架力观测器的智能车辆线控转向系统路感模拟方法","authors":"Leiyan Yu, Zihua Hu, Yongpeng Cai, Zeyu Hou, Yongjun Shi, Baogui Wu, Meilan Tian","doi":"10.1007/s12239-024-00158-9","DOIUrl":null,"url":null,"abstract":"<p>To provide the driver with a more realistic and comfortable driving experience, a novel road feel torque planning method based on rack force estimation and an active return control method for the steering wheel with disturbance observation are proposed for intelligent vehicle. First, for road feel feedback during steering, an improved reduced order extended state observer is designed to estimate the rack force, a secondary filter filters the rack force, obtaining the alignment torque, and superimposing the assist, inertia, damping, friction, and limiting torques to replicate the road feel of the electric power steering system. Second, a proportional-integral observer is designed to observe the lumped uncertainties in the steering wheel system and introduce the observation value into the backstepping controller for active return control of the steering wheel. Finally, an integral sliding mode controller is designed to control the road feel motor to achieve accurate feedback of road feel torque. The virtual simulation results show that the observation effect of the proposed observer is better, the designed road feel torque meets the requirements better; the proposed active return controller can achieve accurate return of the steering wheel, and the sliding mode controller achieves more accurate tracking of the road feel torque.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Road Feel Simulation Method with Rack Force Observer for Intelligent Vehicle Steer-by-Wire System\",\"authors\":\"Leiyan Yu, Zihua Hu, Yongpeng Cai, Zeyu Hou, Yongjun Shi, Baogui Wu, Meilan Tian\",\"doi\":\"10.1007/s12239-024-00158-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To provide the driver with a more realistic and comfortable driving experience, a novel road feel torque planning method based on rack force estimation and an active return control method for the steering wheel with disturbance observation are proposed for intelligent vehicle. First, for road feel feedback during steering, an improved reduced order extended state observer is designed to estimate the rack force, a secondary filter filters the rack force, obtaining the alignment torque, and superimposing the assist, inertia, damping, friction, and limiting torques to replicate the road feel of the electric power steering system. Second, a proportional-integral observer is designed to observe the lumped uncertainties in the steering wheel system and introduce the observation value into the backstepping controller for active return control of the steering wheel. Finally, an integral sliding mode controller is designed to control the road feel motor to achieve accurate feedback of road feel torque. The virtual simulation results show that the observation effect of the proposed observer is better, the designed road feel torque meets the requirements better; the proposed active return controller can achieve accurate return of the steering wheel, and the sliding mode controller achieves more accurate tracking of the road feel torque.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00158-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00158-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了给驾驶员提供更真实、更舒适的驾驶体验,本文提出了一种基于齿条力估算的新型路感扭矩规划方法,以及一种具有扰动观测功能的智能汽车方向盘主动回位控制方法。首先,针对转向过程中的路感反馈,设计了一种改进的降阶扩展状态观测器来估计齿条力,通过二级滤波器过滤齿条力,获得对中扭矩,并叠加辅助扭矩、惯性扭矩、阻尼扭矩、摩擦扭矩和限制扭矩,以复制电动助力转向系统的路感。其次,设计了一个比例积分观测器来观测方向盘系统中的块状不确定性,并将观测值引入反步进控制器,以实现方向盘的主动回归控制。最后,设计了一个积分滑动模式控制器来控制路感电机,以实现路感扭矩的精确反馈。虚拟仿真结果表明,所提出的观测器的观测效果更好,设计的路感扭矩更符合要求;所提出的主动回归控制器可以实现方向盘的精确回归,滑动模式控制器实现了对路感扭矩更精确的跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Road Feel Simulation Method with Rack Force Observer for Intelligent Vehicle Steer-by-Wire System

To provide the driver with a more realistic and comfortable driving experience, a novel road feel torque planning method based on rack force estimation and an active return control method for the steering wheel with disturbance observation are proposed for intelligent vehicle. First, for road feel feedback during steering, an improved reduced order extended state observer is designed to estimate the rack force, a secondary filter filters the rack force, obtaining the alignment torque, and superimposing the assist, inertia, damping, friction, and limiting torques to replicate the road feel of the electric power steering system. Second, a proportional-integral observer is designed to observe the lumped uncertainties in the steering wheel system and introduce the observation value into the backstepping controller for active return control of the steering wheel. Finally, an integral sliding mode controller is designed to control the road feel motor to achieve accurate feedback of road feel torque. The virtual simulation results show that the observation effect of the proposed observer is better, the designed road feel torque meets the requirements better; the proposed active return controller can achieve accurate return of the steering wheel, and the sliding mode controller achieves more accurate tracking of the road feel torque.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1