基于响应面法和 NSGA-II 优化提高天然气发动机在高海拔地区的性能

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL International Journal of Automotive Technology Pub Date : 2024-09-10 DOI:10.1007/s12239-024-00150-3
Zhiqiang Yu, Zongyu Yue, Shouzhen Zhang, Dezhong Ning, Yufeng Qin, Li Sheng, Zunqing Zheng, Mingfa Yao
{"title":"基于响应面法和 NSGA-II 优化提高天然气发动机在高海拔地区的性能","authors":"Zhiqiang Yu, Zongyu Yue, Shouzhen Zhang, Dezhong Ning, Yufeng Qin, Li Sheng, Zunqing Zheng, Mingfa Yao","doi":"10.1007/s12239-024-00150-3","DOIUrl":null,"url":null,"abstract":"<p>Natural gas is an emerging alternative fuel for internal combustion engines in the transportation sector. However, the performance of natural gas engines can be significantly affected by changes in atmospheric pressure and temperature at high altitudes. To address this issue and enhance the performance of natural gas engines in plateau environments, a study focused on a two-stage turbocharged heavy-duty spark-ignition natural gas engine and its performance improvement is conducted targeting at operating altitude of 4000 m. A one-dimensional model of the engine is firstly developed and validated against experimental data at varying altitudes. The experimental and simulated data suggest engine power loss of 3% and 18% at 2500 m and 4000 m altitudes, respectively. Then, a response surface model of the engine is constructed employing the Box–Behnken experimental design method, considering optimization factors such as the compression ratio (CR), spark timing (ST), and bypass valve equivalent diameter (BVED). The objectives of the optimization are to enhance power, reduce brake specific fuel consumption (BSFC) and minimize nitrogen oxide (NOx) emissions. Finally, while adhering to engine durability constraints, the NSGA-II optimization algorithm is utilized for the multi-objective optimization. The optimization results demonstrate that at an altitude of 4000 m, the engine power recovers to approximately 86% of that at sea level, with a slight increase in BSFC and a decrease in NOx emissions. Therefore, this proposed engine optimization method effectively restores the performance of natural gas engines at high altitudes.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"4 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Performance of Natural Gas Engine at High Altitude Based on Response Surface Method and NSGA-II Optimization\",\"authors\":\"Zhiqiang Yu, Zongyu Yue, Shouzhen Zhang, Dezhong Ning, Yufeng Qin, Li Sheng, Zunqing Zheng, Mingfa Yao\",\"doi\":\"10.1007/s12239-024-00150-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Natural gas is an emerging alternative fuel for internal combustion engines in the transportation sector. However, the performance of natural gas engines can be significantly affected by changes in atmospheric pressure and temperature at high altitudes. To address this issue and enhance the performance of natural gas engines in plateau environments, a study focused on a two-stage turbocharged heavy-duty spark-ignition natural gas engine and its performance improvement is conducted targeting at operating altitude of 4000 m. A one-dimensional model of the engine is firstly developed and validated against experimental data at varying altitudes. The experimental and simulated data suggest engine power loss of 3% and 18% at 2500 m and 4000 m altitudes, respectively. Then, a response surface model of the engine is constructed employing the Box–Behnken experimental design method, considering optimization factors such as the compression ratio (CR), spark timing (ST), and bypass valve equivalent diameter (BVED). The objectives of the optimization are to enhance power, reduce brake specific fuel consumption (BSFC) and minimize nitrogen oxide (NOx) emissions. Finally, while adhering to engine durability constraints, the NSGA-II optimization algorithm is utilized for the multi-objective optimization. The optimization results demonstrate that at an altitude of 4000 m, the engine power recovers to approximately 86% of that at sea level, with a slight increase in BSFC and a decrease in NOx emissions. Therefore, this proposed engine optimization method effectively restores the performance of natural gas engines at high altitudes.</p>\",\"PeriodicalId\":50338,\"journal\":{\"name\":\"International Journal of Automotive Technology\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00150-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00150-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

天然气是运输业中一种新兴的内燃机替代燃料。然而,天然气发动机的性能会受到高海拔地区大气压力和温度变化的显著影响。为解决这一问题并提高天然气发动机在高原环境下的性能,我们以工作海拔 4000 米的两级涡轮增压重型火花点火式天然气发动机及其性能改进为研究对象,首先建立了发动机的一维模型,并根据不同海拔高度下的实验数据进行了验证。实验和模拟数据表明,在海拔 2500 米和 4000 米时,发动机功率损失分别为 3% 和 18%。然后,考虑到压缩比 (CR)、火花正时 (ST) 和旁通阀等效直径 (BVED) 等优化因素,采用方框-贝肯实验设计法构建了发动机的响应面模型。优化的目标是提高功率、降低制动比油耗(BSFC)和减少氮氧化物(NOx)排放。最后,在遵守发动机耐用性约束条件的同时,利用 NSGA-II 优化算法进行多目标优化。优化结果表明,在海拔 4000 米时,发动机功率恢复到海平面时的约 86%,BSFC 略有增加,NOx 排放有所减少。因此,所提出的发动机优化方法能有效恢复天然气发动机在高海拔地区的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the Performance of Natural Gas Engine at High Altitude Based on Response Surface Method and NSGA-II Optimization

Natural gas is an emerging alternative fuel for internal combustion engines in the transportation sector. However, the performance of natural gas engines can be significantly affected by changes in atmospheric pressure and temperature at high altitudes. To address this issue and enhance the performance of natural gas engines in plateau environments, a study focused on a two-stage turbocharged heavy-duty spark-ignition natural gas engine and its performance improvement is conducted targeting at operating altitude of 4000 m. A one-dimensional model of the engine is firstly developed and validated against experimental data at varying altitudes. The experimental and simulated data suggest engine power loss of 3% and 18% at 2500 m and 4000 m altitudes, respectively. Then, a response surface model of the engine is constructed employing the Box–Behnken experimental design method, considering optimization factors such as the compression ratio (CR), spark timing (ST), and bypass valve equivalent diameter (BVED). The objectives of the optimization are to enhance power, reduce brake specific fuel consumption (BSFC) and minimize nitrogen oxide (NOx) emissions. Finally, while adhering to engine durability constraints, the NSGA-II optimization algorithm is utilized for the multi-objective optimization. The optimization results demonstrate that at an altitude of 4000 m, the engine power recovers to approximately 86% of that at sea level, with a slight increase in BSFC and a decrease in NOx emissions. Therefore, this proposed engine optimization method effectively restores the performance of natural gas engines at high altitudes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Automotive Technology
International Journal of Automotive Technology 工程技术-工程:机械
CiteScore
3.10
自引率
12.50%
发文量
129
审稿时长
6 months
期刊介绍: The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies. The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published. When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors. No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.
期刊最新文献
Testbed and Analysis of Highway Cut-In Scenarios for Evaluating the AEB and FCW Functions Prediction Models of Overall Thermal Sensation and Comfort in Vehicle Cabin Based on Field Experiments Efficient Path Planning for Automated Valet Parking: Integrating Hybrid A* Search with Geometric Curves Road Feel Simulation Method with Rack Force Observer for Intelligent Vehicle Steer-by-Wire System Multi-physical Field Coupling Analysis of Flat Wire Motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1