Jinkyeom Cho, Byeonghee Yang, Joonyoung Park, Sungdeok Kim, Hyeongcheol Lee
{"title":"利用干扰观测器控制混合动力电动汽车的泊车辅助系统","authors":"Jinkyeom Cho, Byeonghee Yang, Joonyoung Park, Sungdeok Kim, Hyeongcheol Lee","doi":"10.1007/s12239-024-00133-4","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a remote smart parking assist (RSPA) control algorithm for hybrid electric vehicles based on a disturbance observer (DOB) and feedback control. The purpose of the proposed control algorithm is to improve the departure/stop agility and speed control performance of the RSPA. The DOB, activated when the hydraulic brake is released and vehicle departure initiates, estimates disturbances such as slippery road, road slope and bump road, and quickly compensates for these disturbances. The feedback controller corrects the motor torque based on the target speed and current vehicle speed. The gain of the feedback controller is adjusted according to the road gradient, which is estimated by a gradient observer. To validate the proposed control algorithm, actual vehicle test is performed using the Kia Niro Plug-in hybrid electric vehicle (PHEV). The results of the vehicle test show that the proposed control algorithm improves the robustness of the RSPA function.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parking Assistance System Control Using a Disturbance Observer for Hybrid Electric Vehicles\",\"authors\":\"Jinkyeom Cho, Byeonghee Yang, Joonyoung Park, Sungdeok Kim, Hyeongcheol Lee\",\"doi\":\"10.1007/s12239-024-00133-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a remote smart parking assist (RSPA) control algorithm for hybrid electric vehicles based on a disturbance observer (DOB) and feedback control. The purpose of the proposed control algorithm is to improve the departure/stop agility and speed control performance of the RSPA. The DOB, activated when the hydraulic brake is released and vehicle departure initiates, estimates disturbances such as slippery road, road slope and bump road, and quickly compensates for these disturbances. The feedback controller corrects the motor torque based on the target speed and current vehicle speed. The gain of the feedback controller is adjusted according to the road gradient, which is estimated by a gradient observer. To validate the proposed control algorithm, actual vehicle test is performed using the Kia Niro Plug-in hybrid electric vehicle (PHEV). The results of the vehicle test show that the proposed control algorithm improves the robustness of the RSPA function.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00133-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00133-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Parking Assistance System Control Using a Disturbance Observer for Hybrid Electric Vehicles
This paper presents a remote smart parking assist (RSPA) control algorithm for hybrid electric vehicles based on a disturbance observer (DOB) and feedback control. The purpose of the proposed control algorithm is to improve the departure/stop agility and speed control performance of the RSPA. The DOB, activated when the hydraulic brake is released and vehicle departure initiates, estimates disturbances such as slippery road, road slope and bump road, and quickly compensates for these disturbances. The feedback controller corrects the motor torque based on the target speed and current vehicle speed. The gain of the feedback controller is adjusted according to the road gradient, which is estimated by a gradient observer. To validate the proposed control algorithm, actual vehicle test is performed using the Kia Niro Plug-in hybrid electric vehicle (PHEV). The results of the vehicle test show that the proposed control algorithm improves the robustness of the RSPA function.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.