Rachel Tilley, David Holmes, Edmund Pickering, Maria Woodruff
{"title":"用于赛车运动能量吸收的 3D 打印超材料","authors":"Rachel Tilley, David Holmes, Edmund Pickering, Maria Woodruff","doi":"10.1007/s12239-024-00136-1","DOIUrl":null,"url":null,"abstract":"<p>In this study, various 3D printed metamaterials are investigated for application in energy absorbing structures in motorsports. Impact attenuating structures are used to decelerate vehicles and protect drivers in the event of a crash. Additive manufacturing enables complex plastic structures which can facilitate improved angular resistance and reduced weight and cost compared with traditional approaches. Metamaterials were 3D printed from PLA using commercially available equipment and include gyroid structures, a novel reinforced gyroid design and a lattice designed using finite-element analysis-based topology optimization. Compression testing was used to measure stress–strain response, compressive modulus, and energy absorption. This demonstrated gyroids and reinforced gyroids have ideal compressive behavior for high energy absorption under impact. The topology optimized metamaterial was found unsuitable for this application due to its high stiffness, revealing a weakness in traditional topology optimization approaches which are not catered to maximize energy absorption. The reinforced gyroid demonstrated the highest specific energy absorption and was used to manufacture an impact attenuator which demonstrated the potential to safely stop a hypothetical 300 kg vehicle crash. This work supports that gyroid-based structures can reduce weight, volume and cost over current materials in all motorsport categories, with improved safety from oblique crashes.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Printed Metamaterials for Energy Absorption in Motorsport Applications\",\"authors\":\"Rachel Tilley, David Holmes, Edmund Pickering, Maria Woodruff\",\"doi\":\"10.1007/s12239-024-00136-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, various 3D printed metamaterials are investigated for application in energy absorbing structures in motorsports. Impact attenuating structures are used to decelerate vehicles and protect drivers in the event of a crash. Additive manufacturing enables complex plastic structures which can facilitate improved angular resistance and reduced weight and cost compared with traditional approaches. Metamaterials were 3D printed from PLA using commercially available equipment and include gyroid structures, a novel reinforced gyroid design and a lattice designed using finite-element analysis-based topology optimization. Compression testing was used to measure stress–strain response, compressive modulus, and energy absorption. This demonstrated gyroids and reinforced gyroids have ideal compressive behavior for high energy absorption under impact. The topology optimized metamaterial was found unsuitable for this application due to its high stiffness, revealing a weakness in traditional topology optimization approaches which are not catered to maximize energy absorption. The reinforced gyroid demonstrated the highest specific energy absorption and was used to manufacture an impact attenuator which demonstrated the potential to safely stop a hypothetical 300 kg vehicle crash. This work supports that gyroid-based structures can reduce weight, volume and cost over current materials in all motorsport categories, with improved safety from oblique crashes.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00136-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00136-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
3D Printed Metamaterials for Energy Absorption in Motorsport Applications
In this study, various 3D printed metamaterials are investigated for application in energy absorbing structures in motorsports. Impact attenuating structures are used to decelerate vehicles and protect drivers in the event of a crash. Additive manufacturing enables complex plastic structures which can facilitate improved angular resistance and reduced weight and cost compared with traditional approaches. Metamaterials were 3D printed from PLA using commercially available equipment and include gyroid structures, a novel reinforced gyroid design and a lattice designed using finite-element analysis-based topology optimization. Compression testing was used to measure stress–strain response, compressive modulus, and energy absorption. This demonstrated gyroids and reinforced gyroids have ideal compressive behavior for high energy absorption under impact. The topology optimized metamaterial was found unsuitable for this application due to its high stiffness, revealing a weakness in traditional topology optimization approaches which are not catered to maximize energy absorption. The reinforced gyroid demonstrated the highest specific energy absorption and was used to manufacture an impact attenuator which demonstrated the potential to safely stop a hypothetical 300 kg vehicle crash. This work supports that gyroid-based structures can reduce weight, volume and cost over current materials in all motorsport categories, with improved safety from oblique crashes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.