{"title":"在热交换器装置中预测乙烯和丙二醇基混合纳米流体效果的实验方法","authors":"Inbanaathan Papla Venugopal, Dhinesh Balasubramanian, Jawahar Raj Sivanandha Gnanavel, Arunagirinathan Chinnasamy, Dhinesh Ram Subbiah Ponvelan","doi":"10.1007/s10973-024-13491-z","DOIUrl":null,"url":null,"abstract":"<p>This study focuses on the application of nanofluids in the context of automobile radiators. The integration of nanofluids in automotive cooling systems, particularly radiators, presents a promising avenue for enhancing heat transfer efficiency. Because they have enhanced thermal conductivity and are engineered suspensions of nanoparticles in base fluids, nanofluids are a desirable solution for addressing heat dissipation issues in car radiators. The core idea of this study is to improve the work done on radiators by selecting an ideal nanofluid with nanoparticles that have a faster rate of heat transmission, thereby reducing the additional work required to maintain the coolant temperature while concurrently achieving higher heat transfer rates between the radiator and coolant. This study also gives a comprehensive overview of nanofluids, including the types of nanofluids (unary and hybrid), methods for their preparation, and the key characteristics required for nanoparticles to be effective and safe for use in nanofluid coolants. It further discusses the properties of specific nanoparticles such as Al<sub>2</sub>O<sub>3</sub>, ZnO, SiO<sub>2</sub>, and CuO, highlighting their thermal characteristics and potential advantages when incorporated into nanofluids. The experimental setup for testing the industrial coolant and prepared nanofluids using an automobile radiator is described in detail. The setup includes a pump to circulate the coolant, a heat source that replicates the engine's heat, and thermocouples to detect temperature changes at both the inlet and outlet. The experimental results are presented in the form of graphs, demonstrating the average cooling performance of each nanofluid mixture. The study also addresses the importance of nanofluid stabilization and describes various tests conducted to check the quality and specific properties of the nanoparticles and nanofluids, including zeta potential, thermal conductivity, FTIR, and pH tests. To test the prepared nanofluids, a radiator setup with real-time temperature measurement has been fabricated and upon experimentation, the ethylene glycol- and water-based nanofluids, with 0.1 mass% nanoparticles show better stability and cooling performance than the nanofluids with 0.2, 0.3 mass% of nanoparticles and with propylene glycol and water-based nanofluids, with 0.1, and 0.2 mass% nanoparticles show better stability and cooling performance than the nanofluids with 0.3 mass% nanoparticles. The study's findings suggest that the optimum addition of nanoparticles in the radiator coolant will result in enhanced cooling performance of the radiator.</p>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"3 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An experimental approach to predict the effect of ethylene and propylene glycol-based hybrid nanofluids in a heat exchanger setup\",\"authors\":\"Inbanaathan Papla Venugopal, Dhinesh Balasubramanian, Jawahar Raj Sivanandha Gnanavel, Arunagirinathan Chinnasamy, Dhinesh Ram Subbiah Ponvelan\",\"doi\":\"10.1007/s10973-024-13491-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study focuses on the application of nanofluids in the context of automobile radiators. The integration of nanofluids in automotive cooling systems, particularly radiators, presents a promising avenue for enhancing heat transfer efficiency. Because they have enhanced thermal conductivity and are engineered suspensions of nanoparticles in base fluids, nanofluids are a desirable solution for addressing heat dissipation issues in car radiators. The core idea of this study is to improve the work done on radiators by selecting an ideal nanofluid with nanoparticles that have a faster rate of heat transmission, thereby reducing the additional work required to maintain the coolant temperature while concurrently achieving higher heat transfer rates between the radiator and coolant. This study also gives a comprehensive overview of nanofluids, including the types of nanofluids (unary and hybrid), methods for their preparation, and the key characteristics required for nanoparticles to be effective and safe for use in nanofluid coolants. It further discusses the properties of specific nanoparticles such as Al<sub>2</sub>O<sub>3</sub>, ZnO, SiO<sub>2</sub>, and CuO, highlighting their thermal characteristics and potential advantages when incorporated into nanofluids. The experimental setup for testing the industrial coolant and prepared nanofluids using an automobile radiator is described in detail. The setup includes a pump to circulate the coolant, a heat source that replicates the engine's heat, and thermocouples to detect temperature changes at both the inlet and outlet. The experimental results are presented in the form of graphs, demonstrating the average cooling performance of each nanofluid mixture. The study also addresses the importance of nanofluid stabilization and describes various tests conducted to check the quality and specific properties of the nanoparticles and nanofluids, including zeta potential, thermal conductivity, FTIR, and pH tests. To test the prepared nanofluids, a radiator setup with real-time temperature measurement has been fabricated and upon experimentation, the ethylene glycol- and water-based nanofluids, with 0.1 mass% nanoparticles show better stability and cooling performance than the nanofluids with 0.2, 0.3 mass% of nanoparticles and with propylene glycol and water-based nanofluids, with 0.1, and 0.2 mass% nanoparticles show better stability and cooling performance than the nanofluids with 0.3 mass% nanoparticles. The study's findings suggest that the optimum addition of nanoparticles in the radiator coolant will result in enhanced cooling performance of the radiator.</p>\",\"PeriodicalId\":678,\"journal\":{\"name\":\"Journal of Thermal Analysis and Calorimetry\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Analysis and Calorimetry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10973-024-13491-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10973-024-13491-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
An experimental approach to predict the effect of ethylene and propylene glycol-based hybrid nanofluids in a heat exchanger setup
This study focuses on the application of nanofluids in the context of automobile radiators. The integration of nanofluids in automotive cooling systems, particularly radiators, presents a promising avenue for enhancing heat transfer efficiency. Because they have enhanced thermal conductivity and are engineered suspensions of nanoparticles in base fluids, nanofluids are a desirable solution for addressing heat dissipation issues in car radiators. The core idea of this study is to improve the work done on radiators by selecting an ideal nanofluid with nanoparticles that have a faster rate of heat transmission, thereby reducing the additional work required to maintain the coolant temperature while concurrently achieving higher heat transfer rates between the radiator and coolant. This study also gives a comprehensive overview of nanofluids, including the types of nanofluids (unary and hybrid), methods for their preparation, and the key characteristics required for nanoparticles to be effective and safe for use in nanofluid coolants. It further discusses the properties of specific nanoparticles such as Al2O3, ZnO, SiO2, and CuO, highlighting their thermal characteristics and potential advantages when incorporated into nanofluids. The experimental setup for testing the industrial coolant and prepared nanofluids using an automobile radiator is described in detail. The setup includes a pump to circulate the coolant, a heat source that replicates the engine's heat, and thermocouples to detect temperature changes at both the inlet and outlet. The experimental results are presented in the form of graphs, demonstrating the average cooling performance of each nanofluid mixture. The study also addresses the importance of nanofluid stabilization and describes various tests conducted to check the quality and specific properties of the nanoparticles and nanofluids, including zeta potential, thermal conductivity, FTIR, and pH tests. To test the prepared nanofluids, a radiator setup with real-time temperature measurement has been fabricated and upon experimentation, the ethylene glycol- and water-based nanofluids, with 0.1 mass% nanoparticles show better stability and cooling performance than the nanofluids with 0.2, 0.3 mass% of nanoparticles and with propylene glycol and water-based nanofluids, with 0.1, and 0.2 mass% nanoparticles show better stability and cooling performance than the nanofluids with 0.3 mass% nanoparticles. The study's findings suggest that the optimum addition of nanoparticles in the radiator coolant will result in enhanced cooling performance of the radiator.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.