Dina Aboelela, Habibatallah Saleh, Attia M. Attia, Y. Elhenawy, Thokozani Majozi, M. Bassyouni
{"title":"利用缓慢热解技术从骆驼刺植物中生产生物油并确定其特性","authors":"Dina Aboelela, Habibatallah Saleh, Attia M. Attia, Y. Elhenawy, Thokozani Majozi, M. Bassyouni","doi":"10.1007/s10973-024-13551-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, slow pyrolysis of the camelthorn plant process was conducted to produce bio-oil, biochar, and gas. The pyrolysis process was conducted between 400 and 550 °C under pressure 10 bar using a fixed bed reactor. The pyrolysis products were bio-oil, biogas, and biochar. These products were characterized using Fourier-transform infrared (FT-IR) model, gas analyzer, chromatographic analysis using GC–MS, and thermogravimetric analysis (TGA). The GC–MS results demonstrated composition of bio-oil, detecting several organic substances including levoglucosan, furan, acetic acid, phenol, and long-chain hydrocarbon. To further understand the chemical composition of bio-oil, FT-IR spectroscopy was conducted to determine functional groups. The thermal behavior and degradation of the camelthorn sample were studied using TGA which provided thermal stability and prospective applications. Gas composition was measured using a gas analyzer. These analytical methods’ results offer insight on the camelthorn plant’s potential as a sustainable bio-oil and biochar sources, and these findings contribute to the advancement of biomass conversion expertise and provide vital insights for sustainable energy production.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 19","pages":"10633 - 10645"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production and characterization of bio-oil from camelthorn plant using slow pyrolysis\",\"authors\":\"Dina Aboelela, Habibatallah Saleh, Attia M. Attia, Y. Elhenawy, Thokozani Majozi, M. Bassyouni\",\"doi\":\"10.1007/s10973-024-13551-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, slow pyrolysis of the camelthorn plant process was conducted to produce bio-oil, biochar, and gas. The pyrolysis process was conducted between 400 and 550 °C under pressure 10 bar using a fixed bed reactor. The pyrolysis products were bio-oil, biogas, and biochar. These products were characterized using Fourier-transform infrared (FT-IR) model, gas analyzer, chromatographic analysis using GC–MS, and thermogravimetric analysis (TGA). The GC–MS results demonstrated composition of bio-oil, detecting several organic substances including levoglucosan, furan, acetic acid, phenol, and long-chain hydrocarbon. To further understand the chemical composition of bio-oil, FT-IR spectroscopy was conducted to determine functional groups. The thermal behavior and degradation of the camelthorn sample were studied using TGA which provided thermal stability and prospective applications. Gas composition was measured using a gas analyzer. These analytical methods’ results offer insight on the camelthorn plant’s potential as a sustainable bio-oil and biochar sources, and these findings contribute to the advancement of biomass conversion expertise and provide vital insights for sustainable energy production.</p></div>\",\"PeriodicalId\":678,\"journal\":{\"name\":\"Journal of Thermal Analysis and Calorimetry\",\"volume\":\"149 19\",\"pages\":\"10633 - 10645\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Analysis and Calorimetry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10973-024-13551-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13551-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Production and characterization of bio-oil from camelthorn plant using slow pyrolysis
In this study, slow pyrolysis of the camelthorn plant process was conducted to produce bio-oil, biochar, and gas. The pyrolysis process was conducted between 400 and 550 °C under pressure 10 bar using a fixed bed reactor. The pyrolysis products were bio-oil, biogas, and biochar. These products were characterized using Fourier-transform infrared (FT-IR) model, gas analyzer, chromatographic analysis using GC–MS, and thermogravimetric analysis (TGA). The GC–MS results demonstrated composition of bio-oil, detecting several organic substances including levoglucosan, furan, acetic acid, phenol, and long-chain hydrocarbon. To further understand the chemical composition of bio-oil, FT-IR spectroscopy was conducted to determine functional groups. The thermal behavior and degradation of the camelthorn sample were studied using TGA which provided thermal stability and prospective applications. Gas composition was measured using a gas analyzer. These analytical methods’ results offer insight on the camelthorn plant’s potential as a sustainable bio-oil and biochar sources, and these findings contribute to the advancement of biomass conversion expertise and provide vital insights for sustainable energy production.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.