用于多相流建模的改进型平滑粒子流体力学方法

IF 4.1 2区 工程技术 Q1 MECHANICS Physics of Fluids Pub Date : 2024-09-10 DOI:10.1063/5.0226148
Yongze Li, Ting Long
{"title":"用于多相流建模的改进型平滑粒子流体力学方法","authors":"Yongze Li, Ting Long","doi":"10.1063/5.0226148","DOIUrl":null,"url":null,"abstract":"Multiphase flows are prevalent in both natural and engineered systems. The study of multiphase flow problems using numerical simulation is challenging due to the presence of high nonlinearities and moving interfaces. In this paper, an improved multiphase smoothed particle hydrodynamics (SPH) model is proposed for simulating multiphase flows. In the improved multiphase SPH model, an improved interface repulsive force model is proposed to reduce the interpenetration of particles at the multiphase interface and make the multiphase interface smooth and clear, and an improved kernel gradient correction is introduced to optimize the computational results. In addition, the particle shifting technology is applied to make the particle distribution uniform. Five numerical examples including the Rayleigh–Taylor instability, non-Boussinesq lock-exchange problem, square droplet deformation, single bubble rise, and circular droplet oscillation are investigated to verify the correctness and effectiveness of the improved multiphase SPH model. The results demonstrate that the improved multiphase SPH approach is effective in modeling multiphase flows.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved smoothed particle hydrodynamics method for modeling multiphase flows\",\"authors\":\"Yongze Li, Ting Long\",\"doi\":\"10.1063/5.0226148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiphase flows are prevalent in both natural and engineered systems. The study of multiphase flow problems using numerical simulation is challenging due to the presence of high nonlinearities and moving interfaces. In this paper, an improved multiphase smoothed particle hydrodynamics (SPH) model is proposed for simulating multiphase flows. In the improved multiphase SPH model, an improved interface repulsive force model is proposed to reduce the interpenetration of particles at the multiphase interface and make the multiphase interface smooth and clear, and an improved kernel gradient correction is introduced to optimize the computational results. In addition, the particle shifting technology is applied to make the particle distribution uniform. Five numerical examples including the Rayleigh–Taylor instability, non-Boussinesq lock-exchange problem, square droplet deformation, single bubble rise, and circular droplet oscillation are investigated to verify the correctness and effectiveness of the improved multiphase SPH model. The results demonstrate that the improved multiphase SPH approach is effective in modeling multiphase flows.\",\"PeriodicalId\":20066,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0226148\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0226148","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

多相流普遍存在于自然和工程系统中。由于存在高非线性和移动界面,利用数值模拟研究多相流问题具有挑战性。本文提出了一种用于模拟多相流的改进型多相平滑粒子流体力学(SPH)模型。在改进的多相 SPH 模型中,提出了改进的界面排斥力模型,以减少颗粒在多相界面上的相互渗透,使多相界面变得平滑清晰,并引入了改进的内核梯度修正,以优化计算结果。此外,还应用了颗粒移动技术使颗粒分布均匀。研究了五个数值实例,包括瑞利-泰勒不稳定性、非布辛斯克锁定交换问题、方形液滴变形、单气泡上升和圆形液滴振荡,以验证改进的多相 SPH 模型的正确性和有效性。结果表明,改进的多相 SPH 方法能有效地模拟多相流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved smoothed particle hydrodynamics method for modeling multiphase flows
Multiphase flows are prevalent in both natural and engineered systems. The study of multiphase flow problems using numerical simulation is challenging due to the presence of high nonlinearities and moving interfaces. In this paper, an improved multiphase smoothed particle hydrodynamics (SPH) model is proposed for simulating multiphase flows. In the improved multiphase SPH model, an improved interface repulsive force model is proposed to reduce the interpenetration of particles at the multiphase interface and make the multiphase interface smooth and clear, and an improved kernel gradient correction is introduced to optimize the computational results. In addition, the particle shifting technology is applied to make the particle distribution uniform. Five numerical examples including the Rayleigh–Taylor instability, non-Boussinesq lock-exchange problem, square droplet deformation, single bubble rise, and circular droplet oscillation are investigated to verify the correctness and effectiveness of the improved multiphase SPH model. The results demonstrate that the improved multiphase SPH approach is effective in modeling multiphase flows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of Fluids
Physics of Fluids 物理-力学
CiteScore
6.50
自引率
41.30%
发文量
2063
审稿时长
2.6 months
期刊介绍: Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to: -Acoustics -Aerospace and aeronautical flow -Astrophysical flow -Biofluid mechanics -Cavitation and cavitating flows -Combustion flows -Complex fluids -Compressible flow -Computational fluid dynamics -Contact lines -Continuum mechanics -Convection -Cryogenic flow -Droplets -Electrical and magnetic effects in fluid flow -Foam, bubble, and film mechanics -Flow control -Flow instability and transition -Flow orientation and anisotropy -Flows with other transport phenomena -Flows with complex boundary conditions -Flow visualization -Fluid mechanics -Fluid physical properties -Fluid–structure interactions -Free surface flows -Geophysical flow -Interfacial flow -Knudsen flow -Laminar flow -Liquid crystals -Mathematics of fluids -Micro- and nanofluid mechanics -Mixing -Molecular theory -Nanofluidics -Particulate, multiphase, and granular flow -Processing flows -Relativistic fluid mechanics -Rotating flows -Shock wave phenomena -Soft matter -Stratified flows -Supercritical fluids -Superfluidity -Thermodynamics of flow systems -Transonic flow -Turbulent flow -Viscous and non-Newtonian flow -Viscoelasticity -Vortex dynamics -Waves
期刊最新文献
A comprehensive investigation and optimization of superheat degree on performance of supersonic nozzle by considering non-equilibrium condensation and entropy generation analysis Experimental study on flow/noise of a circular cylinder with concentric/eccentric microperforated ring fairings Predicting orientation in extruded wood polymer composites Lagrangian coherent structures around a bridge pier with scour hole First- and second-order unconditionally stable and decoupled schemes for the closed-loop geothermal system based on the coupled multiphysics model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1