{"title":"锥形纤维上液滴的毛细管驱动迁移","authors":"Yixiao Mao, Chengxi Zhao, Kai Mu, Kai Li, Ting Si","doi":"10.1063/5.0226483","DOIUrl":null,"url":null,"abstract":"A droplet placed on a hydrophilic conical fiber tends to move toward the end of larger radii due to capillary action. Experimental investigations are performed to explore the dynamics of droplets with varying viscosities and volumes on different fibers at the microscale. Droplets are found to accelerate initially and subsequently decelerate during migration. A dynamic model is developed to capture the dynamics of droplet migration, addressing the limitations of previous equilibrium-based scaling laws. Both experimental results and theoretical predictions indicate that droplets on more divergent fibers experience a longer acceleration phase. Additionally, gravitational effects are pronounced on fibers with small cone angles, exerting a substantial influence on droplet migration even below the capillary scale. Moreover, droplets move more slowly on dry fibers compared to those prewetted with the same liquid, primarily attributed to increased friction. The experiments reveal the formation of a residual liquid film after droplet migration on dry fibers, leading to considerable volume loss in the droplets. To encompass the intricacies of migration on dry fibers, the model is refined to incorporate a higher friction coefficient and variable droplet volumes, providing a more comprehensive depiction of the underlying physics.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"16 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capillary-driven migration of droplets on conical fibers\",\"authors\":\"Yixiao Mao, Chengxi Zhao, Kai Mu, Kai Li, Ting Si\",\"doi\":\"10.1063/5.0226483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A droplet placed on a hydrophilic conical fiber tends to move toward the end of larger radii due to capillary action. Experimental investigations are performed to explore the dynamics of droplets with varying viscosities and volumes on different fibers at the microscale. Droplets are found to accelerate initially and subsequently decelerate during migration. A dynamic model is developed to capture the dynamics of droplet migration, addressing the limitations of previous equilibrium-based scaling laws. Both experimental results and theoretical predictions indicate that droplets on more divergent fibers experience a longer acceleration phase. Additionally, gravitational effects are pronounced on fibers with small cone angles, exerting a substantial influence on droplet migration even below the capillary scale. Moreover, droplets move more slowly on dry fibers compared to those prewetted with the same liquid, primarily attributed to increased friction. The experiments reveal the formation of a residual liquid film after droplet migration on dry fibers, leading to considerable volume loss in the droplets. To encompass the intricacies of migration on dry fibers, the model is refined to incorporate a higher friction coefficient and variable droplet volumes, providing a more comprehensive depiction of the underlying physics.\",\"PeriodicalId\":20066,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0226483\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0226483","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Capillary-driven migration of droplets on conical fibers
A droplet placed on a hydrophilic conical fiber tends to move toward the end of larger radii due to capillary action. Experimental investigations are performed to explore the dynamics of droplets with varying viscosities and volumes on different fibers at the microscale. Droplets are found to accelerate initially and subsequently decelerate during migration. A dynamic model is developed to capture the dynamics of droplet migration, addressing the limitations of previous equilibrium-based scaling laws. Both experimental results and theoretical predictions indicate that droplets on more divergent fibers experience a longer acceleration phase. Additionally, gravitational effects are pronounced on fibers with small cone angles, exerting a substantial influence on droplet migration even below the capillary scale. Moreover, droplets move more slowly on dry fibers compared to those prewetted with the same liquid, primarily attributed to increased friction. The experiments reveal the formation of a residual liquid film after droplet migration on dry fibers, leading to considerable volume loss in the droplets. To encompass the intricacies of migration on dry fibers, the model is refined to incorporate a higher friction coefficient and variable droplet volumes, providing a more comprehensive depiction of the underlying physics.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves