带温度调节的箱内布林克曼-贝纳德对流

IF 4.1 2区 工程技术 Q1 MECHANICS Physics of Fluids Pub Date : 2024-09-10 DOI:10.1063/5.0223384
Kapil Dev, Om P. Suthar, Pradeep G. Siddheshwar
{"title":"带温度调节的箱内布林克曼-贝纳德对流","authors":"Kapil Dev, Om P. Suthar, Pradeep G. Siddheshwar","doi":"10.1063/5.0223384","DOIUrl":null,"url":null,"abstract":"A bounded porous box saturated with Newtonian fluid and subjected to a sinusoidal temperature gradient has various practical applications, such as solar energy storage, groundwater remediation, food processing, and chemical reactors. We address the generalization of the classical Rayleigh–Bénard convection problem in a horizontal fluid layer in an infinitely large domain heated from below to a finite three-dimensional box. We also look into a more intricate form of the modulated Rayleigh–Bénard problem in which the temperature at the bottom boundary varies sinusoidally. The Rayleigh number quantifies the non-sinusoidal part of the temperature gradient, while the amplitude and frequency of modulation describe the sinusoidal one. The critical Rayleigh number is determined using linear and nonlinear stability analyses; for the latter, the energy method is used. There is a possibility of subcritical instabilities, as evidenced by the energy stability estimates being lower than the linear ones. Furthermore, eigenvalues are obtained as a function of aspect ratios, modulation amplitude, and frequency for varying Darcy numbers. Modulation amplitude more significantly triggers a change in flow patterns at the onset of convection compared to the effect of other parameters. Considering water-saturated porous media made up of different materials, we report the critical temperature difference between lower and upper surfaces required for the onset of convection. In addition, a comparison between such a temperature difference obtained from linear theory and the energy method is also provided in the same manner. It is observed that subharmonic instability occurs for all considered porous media packed densely or sparsely.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brinkman–Bénard convection in a box with temperature modulation\",\"authors\":\"Kapil Dev, Om P. Suthar, Pradeep G. Siddheshwar\",\"doi\":\"10.1063/5.0223384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bounded porous box saturated with Newtonian fluid and subjected to a sinusoidal temperature gradient has various practical applications, such as solar energy storage, groundwater remediation, food processing, and chemical reactors. We address the generalization of the classical Rayleigh–Bénard convection problem in a horizontal fluid layer in an infinitely large domain heated from below to a finite three-dimensional box. We also look into a more intricate form of the modulated Rayleigh–Bénard problem in which the temperature at the bottom boundary varies sinusoidally. The Rayleigh number quantifies the non-sinusoidal part of the temperature gradient, while the amplitude and frequency of modulation describe the sinusoidal one. The critical Rayleigh number is determined using linear and nonlinear stability analyses; for the latter, the energy method is used. There is a possibility of subcritical instabilities, as evidenced by the energy stability estimates being lower than the linear ones. Furthermore, eigenvalues are obtained as a function of aspect ratios, modulation amplitude, and frequency for varying Darcy numbers. Modulation amplitude more significantly triggers a change in flow patterns at the onset of convection compared to the effect of other parameters. Considering water-saturated porous media made up of different materials, we report the critical temperature difference between lower and upper surfaces required for the onset of convection. In addition, a comparison between such a temperature difference obtained from linear theory and the energy method is also provided in the same manner. It is observed that subharmonic instability occurs for all considered porous media packed densely or sparsely.\",\"PeriodicalId\":20066,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0223384\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0223384","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

牛顿流体饱和并承受正弦温度梯度的有界多孔箱具有多种实际应用,如太阳能储存、地下水修复、食品加工和化学反应器。我们探讨了从下向上加热的无限大域中水平流体层的经典瑞利-贝纳德对流问题在有限三维空间中的一般化问题。我们还研究了一种更为复杂的调制瑞利-贝纳德问题,其中底部边界的温度呈正弦曲线变化。雷利数量化了温度梯度的非正弦部分,而调制的振幅和频率则描述了正弦部分。临界瑞利数是通过线性和非线性稳定性分析确定的;后者采用能量法。能量稳定性估算值低于线性稳定性估算值,证明可能存在亚临界不稳定性。此外,在达西数不同的情况下,特征值是长宽比、调制幅度和频率的函数。与其他参数的影响相比,调制振幅在对流开始时会更明显地引发流动模式的变化。考虑到由不同材料组成的水饱和多孔介质,我们报告了对流开始所需的上下表面临界温差。此外,我们还以同样的方式比较了线性理论和能量法得出的临界温差。据观察,所有考虑过的多孔介质在密集或稀疏堆积时都会出现亚谐波不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Brinkman–Bénard convection in a box with temperature modulation
A bounded porous box saturated with Newtonian fluid and subjected to a sinusoidal temperature gradient has various practical applications, such as solar energy storage, groundwater remediation, food processing, and chemical reactors. We address the generalization of the classical Rayleigh–Bénard convection problem in a horizontal fluid layer in an infinitely large domain heated from below to a finite three-dimensional box. We also look into a more intricate form of the modulated Rayleigh–Bénard problem in which the temperature at the bottom boundary varies sinusoidally. The Rayleigh number quantifies the non-sinusoidal part of the temperature gradient, while the amplitude and frequency of modulation describe the sinusoidal one. The critical Rayleigh number is determined using linear and nonlinear stability analyses; for the latter, the energy method is used. There is a possibility of subcritical instabilities, as evidenced by the energy stability estimates being lower than the linear ones. Furthermore, eigenvalues are obtained as a function of aspect ratios, modulation amplitude, and frequency for varying Darcy numbers. Modulation amplitude more significantly triggers a change in flow patterns at the onset of convection compared to the effect of other parameters. Considering water-saturated porous media made up of different materials, we report the critical temperature difference between lower and upper surfaces required for the onset of convection. In addition, a comparison between such a temperature difference obtained from linear theory and the energy method is also provided in the same manner. It is observed that subharmonic instability occurs for all considered porous media packed densely or sparsely.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of Fluids
Physics of Fluids 物理-力学
CiteScore
6.50
自引率
41.30%
发文量
2063
审稿时长
2.6 months
期刊介绍: Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to: -Acoustics -Aerospace and aeronautical flow -Astrophysical flow -Biofluid mechanics -Cavitation and cavitating flows -Combustion flows -Complex fluids -Compressible flow -Computational fluid dynamics -Contact lines -Continuum mechanics -Convection -Cryogenic flow -Droplets -Electrical and magnetic effects in fluid flow -Foam, bubble, and film mechanics -Flow control -Flow instability and transition -Flow orientation and anisotropy -Flows with other transport phenomena -Flows with complex boundary conditions -Flow visualization -Fluid mechanics -Fluid physical properties -Fluid–structure interactions -Free surface flows -Geophysical flow -Interfacial flow -Knudsen flow -Laminar flow -Liquid crystals -Mathematics of fluids -Micro- and nanofluid mechanics -Mixing -Molecular theory -Nanofluidics -Particulate, multiphase, and granular flow -Processing flows -Relativistic fluid mechanics -Rotating flows -Shock wave phenomena -Soft matter -Stratified flows -Supercritical fluids -Superfluidity -Thermodynamics of flow systems -Transonic flow -Turbulent flow -Viscous and non-Newtonian flow -Viscoelasticity -Vortex dynamics -Waves
期刊最新文献
Meso-scale investigation on the permeability of frozen soils with the lattice Boltzmann method Computational investigation of both geometric and fluidic compressible turbulent thrust vectoring, using a Coanda based nozzle Directional self-migration of droplets on an inclined surface driven by wettability gradient Overlapping effect of detonation driving during multi-point initiation Effect of loading rate on characteristics of cyclic structural adjustment of sandstone granules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1