{"title":"疏水表面对热能储存和输送系统高速离心泵中气蚀萌发和演化的影响的数值分析","authors":"Dajiang Guo, Cong Wang, Yu Ruan, Hongmei Yin, XiaoXu Fan, Ziwei Wang, MingDa Jiang, Lei Zhang","doi":"10.1063/5.0229878","DOIUrl":null,"url":null,"abstract":"This study explores the influence of wettability surfaces on cavitation inception and evolution in high-speed centrifugal pumps used for thermal energy storage and transfer systems through numerical simulations. The simulations were conducted using the Kunz mass transfer model implemented in Fluent, combined with the Eulerian multiphase flow approach and the shear stress transport k–ω turbulence model. The cavitation dynamics were analyzed across contact angles ranging from superhydrophilic to superhydrophobic conditions. The results demonstrate that superhydrophobic surfaces delay cavitation onset compared to hydrophilic ones, reducing the critical cavitation coefficient by at least 28%. At flow rates of 1.11 Q0 and 0.89 Q0, cavitation numbers show distinct trends, with superhydrophobic surfaces enhancing cavitation stability and reducing the frequency of cavitation shedding. The reentrant jet dynamics are also affected, with increased hydrophobicity weakening the jets and stabilizing cavitation zones. This research aims to advance the understanding of using surface wettability to manage cavitation in high-speed centrifugal pumps, thereby improving the performance and reliability of thermal energy storage and transfer systems.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of hydrophobic surface effects on cavitation inception and evolution in high-speed centrifugal pumps for thermal energy storage and transfer systems\",\"authors\":\"Dajiang Guo, Cong Wang, Yu Ruan, Hongmei Yin, XiaoXu Fan, Ziwei Wang, MingDa Jiang, Lei Zhang\",\"doi\":\"10.1063/5.0229878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the influence of wettability surfaces on cavitation inception and evolution in high-speed centrifugal pumps used for thermal energy storage and transfer systems through numerical simulations. The simulations were conducted using the Kunz mass transfer model implemented in Fluent, combined with the Eulerian multiphase flow approach and the shear stress transport k–ω turbulence model. The cavitation dynamics were analyzed across contact angles ranging from superhydrophilic to superhydrophobic conditions. The results demonstrate that superhydrophobic surfaces delay cavitation onset compared to hydrophilic ones, reducing the critical cavitation coefficient by at least 28%. At flow rates of 1.11 Q0 and 0.89 Q0, cavitation numbers show distinct trends, with superhydrophobic surfaces enhancing cavitation stability and reducing the frequency of cavitation shedding. The reentrant jet dynamics are also affected, with increased hydrophobicity weakening the jets and stabilizing cavitation zones. This research aims to advance the understanding of using surface wettability to manage cavitation in high-speed centrifugal pumps, thereby improving the performance and reliability of thermal energy storage and transfer systems.\",\"PeriodicalId\":20066,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0229878\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0229878","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Numerical analysis of hydrophobic surface effects on cavitation inception and evolution in high-speed centrifugal pumps for thermal energy storage and transfer systems
This study explores the influence of wettability surfaces on cavitation inception and evolution in high-speed centrifugal pumps used for thermal energy storage and transfer systems through numerical simulations. The simulations were conducted using the Kunz mass transfer model implemented in Fluent, combined with the Eulerian multiphase flow approach and the shear stress transport k–ω turbulence model. The cavitation dynamics were analyzed across contact angles ranging from superhydrophilic to superhydrophobic conditions. The results demonstrate that superhydrophobic surfaces delay cavitation onset compared to hydrophilic ones, reducing the critical cavitation coefficient by at least 28%. At flow rates of 1.11 Q0 and 0.89 Q0, cavitation numbers show distinct trends, with superhydrophobic surfaces enhancing cavitation stability and reducing the frequency of cavitation shedding. The reentrant jet dynamics are also affected, with increased hydrophobicity weakening the jets and stabilizing cavitation zones. This research aims to advance the understanding of using surface wettability to manage cavitation in high-speed centrifugal pumps, thereby improving the performance and reliability of thermal energy storage and transfer systems.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves