Xuesen Chu, Feng Zhao, Zhengdao Wang, Yuehong Qian, Guangwen Yang
{"title":"利用晶格玻尔兹曼法研究声波在深度演化声速场中的传播","authors":"Xuesen Chu, Feng Zhao, Zhengdao Wang, Yuehong Qian, Guangwen Yang","doi":"10.1063/5.0222202","DOIUrl":null,"url":null,"abstract":"This study investigates the propagation of sound waves within deep-sea low-sound-speed channels using the lattice Boltzmann method, with a key focus on the influence of depth-dependent sound speed on wave propagation. The depth-variable sound speed condition is realized through the incorporation of an external force proportional to the density gradient. After the model verification, investigations into the two-dimensional spreading of sound sources reveal that the depth-dependent sound speed curves the wave propagation. When source depths differing from the low-sound-speed channel, wave paths deviate due to contrasting speeds above and below. When the sound source is situated within the low-sound-speed channel, waves exhibit converging patterns. The simulations also detail the total reflection behavior of sound waves. When the incident angle falls exceeds the critical angle, the waves remain intact within the low-sound-speed channel, thereby enabling the preservation of high amplitude acoustic signals even at remote locations. The subsequent simulations of sound wave propagation around obstacles demonstrate that the low-sound-speed channel also exhibits better signal transmission capabilities in the presence of obstacles. In a uniform sound speed environment, acoustic wave propagation around a submarine exhibits a symmetric pattern. By contrast, under depth-evolving speed conditions, submarines operating at various depths manifest distinct propagation characteristics, such as asymmetric wave propagation during shallow diving, as well as wave attenuation or even silencing when cruising within low-sound-speed channels. These findings underscore the profound implications of depth-evolving sound speed on underwater acoustic signal detection and transmission.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acoustic wave propagation in depth-evolving sound-speed field using the lattice Boltzmann method\",\"authors\":\"Xuesen Chu, Feng Zhao, Zhengdao Wang, Yuehong Qian, Guangwen Yang\",\"doi\":\"10.1063/5.0222202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the propagation of sound waves within deep-sea low-sound-speed channels using the lattice Boltzmann method, with a key focus on the influence of depth-dependent sound speed on wave propagation. The depth-variable sound speed condition is realized through the incorporation of an external force proportional to the density gradient. After the model verification, investigations into the two-dimensional spreading of sound sources reveal that the depth-dependent sound speed curves the wave propagation. When source depths differing from the low-sound-speed channel, wave paths deviate due to contrasting speeds above and below. When the sound source is situated within the low-sound-speed channel, waves exhibit converging patterns. The simulations also detail the total reflection behavior of sound waves. When the incident angle falls exceeds the critical angle, the waves remain intact within the low-sound-speed channel, thereby enabling the preservation of high amplitude acoustic signals even at remote locations. The subsequent simulations of sound wave propagation around obstacles demonstrate that the low-sound-speed channel also exhibits better signal transmission capabilities in the presence of obstacles. In a uniform sound speed environment, acoustic wave propagation around a submarine exhibits a symmetric pattern. By contrast, under depth-evolving speed conditions, submarines operating at various depths manifest distinct propagation characteristics, such as asymmetric wave propagation during shallow diving, as well as wave attenuation or even silencing when cruising within low-sound-speed channels. These findings underscore the profound implications of depth-evolving sound speed on underwater acoustic signal detection and transmission.\",\"PeriodicalId\":20066,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0222202\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0222202","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Acoustic wave propagation in depth-evolving sound-speed field using the lattice Boltzmann method
This study investigates the propagation of sound waves within deep-sea low-sound-speed channels using the lattice Boltzmann method, with a key focus on the influence of depth-dependent sound speed on wave propagation. The depth-variable sound speed condition is realized through the incorporation of an external force proportional to the density gradient. After the model verification, investigations into the two-dimensional spreading of sound sources reveal that the depth-dependent sound speed curves the wave propagation. When source depths differing from the low-sound-speed channel, wave paths deviate due to contrasting speeds above and below. When the sound source is situated within the low-sound-speed channel, waves exhibit converging patterns. The simulations also detail the total reflection behavior of sound waves. When the incident angle falls exceeds the critical angle, the waves remain intact within the low-sound-speed channel, thereby enabling the preservation of high amplitude acoustic signals even at remote locations. The subsequent simulations of sound wave propagation around obstacles demonstrate that the low-sound-speed channel also exhibits better signal transmission capabilities in the presence of obstacles. In a uniform sound speed environment, acoustic wave propagation around a submarine exhibits a symmetric pattern. By contrast, under depth-evolving speed conditions, submarines operating at various depths manifest distinct propagation characteristics, such as asymmetric wave propagation during shallow diving, as well as wave attenuation or even silencing when cruising within low-sound-speed channels. These findings underscore the profound implications of depth-evolving sound speed on underwater acoustic signal detection and transmission.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves