具有内置电场的可扩展二维半导体范德华异质结构界面,用于增强电化学水分离功能

Jeongha Eom, Yun Seong Cho, Jihun Lee, Jae Won Heo, Iva Plutnarová, Zdeněk Sofer, In Soo Kim, Dongjoon Rhee, Joohoon Kang
{"title":"具有内置电场的可扩展二维半导体范德华异质结构界面,用于增强电化学水分离功能","authors":"Jeongha Eom, Yun Seong Cho, Jihun Lee, Jae Won Heo, Iva Plutnarová, Zdeněk Sofer, In Soo Kim, Dongjoon Rhee, Joohoon Kang","doi":"10.1002/sstr.202400257","DOIUrl":null,"url":null,"abstract":"Electrochemical water splitting has received tremendous attention as an eco-friendly approach to produce hydrogen. Noble metals and their oxides are commonly used as electrocatalysts to reduce activation energy barriers for hydrogen and oxygen evolution reactions in high-performance electrodes, but their cost, scarcity, and limited stability hinder widespread adoption of electrochemical water splitting. Further advancements are therefore needed to reduce reliance on noble metals and improve the long-term stability. Herein, solution-processed 2D van der Waals (vdW) p–n heterostructures as an interfacial layer between catalysts and the electrode are introduced to enhance the catalytic performance. These heterostructures are formed by sequentially assembling electrochemically exfoliated black phosphorus and molybdenum disulfide nanosheets into electronic-grade p- and n-type semiconductor thin films, with the scalability extending across tens-of-centimeter scale areas. Benefiting from the charge distribution and built-in electric field developed upon heterojunction formation, the vdW heterostructure interfacial layer increases both the catalytic activity and stability of commercial Pt/C and Ir/C catalysts compared to when these catalysts are directly loaded onto electrodes. Additionally, the vdW heterostructure also serves as a template for synthesizing nanostructured Pt and Ir catalysts through electrodeposition, further enhancing the catalytic performance in terms of mass activity and stability.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable 2D Semiconductor-Based van der Waals Heterostructure Interface with Built-in Electric Field for Enhanced Electrochemical Water Splitting\",\"authors\":\"Jeongha Eom, Yun Seong Cho, Jihun Lee, Jae Won Heo, Iva Plutnarová, Zdeněk Sofer, In Soo Kim, Dongjoon Rhee, Joohoon Kang\",\"doi\":\"10.1002/sstr.202400257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrochemical water splitting has received tremendous attention as an eco-friendly approach to produce hydrogen. Noble metals and their oxides are commonly used as electrocatalysts to reduce activation energy barriers for hydrogen and oxygen evolution reactions in high-performance electrodes, but their cost, scarcity, and limited stability hinder widespread adoption of electrochemical water splitting. Further advancements are therefore needed to reduce reliance on noble metals and improve the long-term stability. Herein, solution-processed 2D van der Waals (vdW) p–n heterostructures as an interfacial layer between catalysts and the electrode are introduced to enhance the catalytic performance. These heterostructures are formed by sequentially assembling electrochemically exfoliated black phosphorus and molybdenum disulfide nanosheets into electronic-grade p- and n-type semiconductor thin films, with the scalability extending across tens-of-centimeter scale areas. Benefiting from the charge distribution and built-in electric field developed upon heterojunction formation, the vdW heterostructure interfacial layer increases both the catalytic activity and stability of commercial Pt/C and Ir/C catalysts compared to when these catalysts are directly loaded onto electrodes. Additionally, the vdW heterostructure also serves as a template for synthesizing nanostructured Pt and Ir catalysts through electrodeposition, further enhancing the catalytic performance in terms of mass activity and stability.\",\"PeriodicalId\":21841,\"journal\":{\"name\":\"Small Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sstr.202400257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电化学水分离作为一种生态友好型制氢方法受到了极大关注。贵金属及其氧化物通常用作电催化剂,以降低高性能电极中氢和氧进化反应的活化能障碍,但其成本、稀缺性和有限的稳定性阻碍了电化学分水技术的广泛应用。因此,需要进一步的进步来减少对贵金属的依赖,并提高其长期稳定性。本文引入溶液加工的二维范德华(vdW)p-n 异质结构作为催化剂与电极之间的界面层,以提高催化性能。这些异质结构是通过将电化学剥离的黑磷和二硫化钼纳米片依次组装成电子级 p 型和 n 型半导体薄膜而形成的,其可扩展性可延伸至数十厘米的区域。得益于异质结形成时产生的电荷分布和内置电场,vdW 异质结构界面层提高了商用 Pt/C 和 Ir/C 催化剂的催化活性和稳定性,而不是直接将这些催化剂装载到电极上。此外,vdW 异质结构还可作为通过电沉积合成纳米结构铂和铱催化剂的模板,进一步提高催化活性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scalable 2D Semiconductor-Based van der Waals Heterostructure Interface with Built-in Electric Field for Enhanced Electrochemical Water Splitting
Electrochemical water splitting has received tremendous attention as an eco-friendly approach to produce hydrogen. Noble metals and their oxides are commonly used as electrocatalysts to reduce activation energy barriers for hydrogen and oxygen evolution reactions in high-performance electrodes, but their cost, scarcity, and limited stability hinder widespread adoption of electrochemical water splitting. Further advancements are therefore needed to reduce reliance on noble metals and improve the long-term stability. Herein, solution-processed 2D van der Waals (vdW) p–n heterostructures as an interfacial layer between catalysts and the electrode are introduced to enhance the catalytic performance. These heterostructures are formed by sequentially assembling electrochemically exfoliated black phosphorus and molybdenum disulfide nanosheets into electronic-grade p- and n-type semiconductor thin films, with the scalability extending across tens-of-centimeter scale areas. Benefiting from the charge distribution and built-in electric field developed upon heterojunction formation, the vdW heterostructure interfacial layer increases both the catalytic activity and stability of commercial Pt/C and Ir/C catalysts compared to when these catalysts are directly loaded onto electrodes. Additionally, the vdW heterostructure also serves as a template for synthesizing nanostructured Pt and Ir catalysts through electrodeposition, further enhancing the catalytic performance in terms of mass activity and stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
期刊最新文献
Covalently Linked Pigment@TiO2 Hybrid Materials by One-Pot Solvothermal Synthesis Pressure-Enhanced Superconductivity and Structural Phase Transition in Layered Sn4P3 Unveiling Inequality of Atoms in Ultrasmall Pt Clusters: Oxygen Adsorption Limited to the Uppermost Atomic Layer Spatially Selective Ultraprecision Polishing and Cleaning by Collective Behavior of Micro Spinbots Inkjet-Printed Flexible and Transparent Ti3C2Tx/TiO2 Composite Films: A Strategy for Photoelectrically Controllable Photocatalytic Degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1