基于六苯氧基环三磷腈的阻燃硬质聚氨酯泡沫复合材料:阻燃性、燃烧性能和热解动力学

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Journal of Thermal Analysis and Calorimetry Pub Date : 2024-09-02 DOI:10.1007/s10973-024-13485-x
Junjie Sun, Zedong Gong, Aihuang Cui, Yang Hu, Po Sun, Gang Tang, Xiuyu Liu
{"title":"基于六苯氧基环三磷腈的阻燃硬质聚氨酯泡沫复合材料:阻燃性、燃烧性能和热解动力学","authors":"Junjie Sun, Zedong Gong, Aihuang Cui, Yang Hu, Po Sun, Gang Tang, Xiuyu Liu","doi":"10.1007/s10973-024-13485-x","DOIUrl":null,"url":null,"abstract":"<p>The phosphorus–nitrogen flame retardant hexaphenoxycyclotriphosphorus (HPCTP) was used as a flame retardant for rigid polyurethane foam (RPUF) to fabricate a series of RPUF/HPCTP composites by all-water foaming technology. On this basis, the fire retardancy of the composites were investigated by thermogravimetric (TG), thermogravimetric–infrared (TG-FTIR), scanning electron microscopy (SEM), microcalorimetry, and Raman Spectroscopy. The tests showed that the RPUF/HPCTP composites reached the maximum limiting oxygen index (LOI) value of 24.2 vol% and passed UL-94 V-1 rating. It was also observed that RPUF/HPCTP composites exhibited thermal conductivity of 0.035 W m<sup>-1</sup>K<sup>-1</sup>, suggesting excellent thermal insulation property of the composites. Thermal kinetic investigation confirmed that the activation energy of the initial RPUF is 102.26 kJ·mol<sup>-1</sup>. RPUF/HPCTP15 possessed the highest activation energy of 105.24 kJ·mol<sup>-1</sup>, indicating the highest thermal stability. TG-FTIR confirmed that HPCTP could decrease the release intensity of CO<sub>2</sub> and isocyanate, indicating enhanced fire safety of RPUF/HPCTP composites. Raman spectra and SEM investigation showed that the graphitization degree and compactness of char residue for RPUF/HPCTP composites were significantly enhanced, which were benefit to fire retarding enhancement for the composites in fire. This work provided a new way for preparation of fire retarded RPUF composites.</p>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"34 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flame retardant rigid polyurethane foam composites based on hexaphenoxycyclotriphosphonitrile: flame retardancy, combustion properties and pyrolysis kinetics\",\"authors\":\"Junjie Sun, Zedong Gong, Aihuang Cui, Yang Hu, Po Sun, Gang Tang, Xiuyu Liu\",\"doi\":\"10.1007/s10973-024-13485-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The phosphorus–nitrogen flame retardant hexaphenoxycyclotriphosphorus (HPCTP) was used as a flame retardant for rigid polyurethane foam (RPUF) to fabricate a series of RPUF/HPCTP composites by all-water foaming technology. On this basis, the fire retardancy of the composites were investigated by thermogravimetric (TG), thermogravimetric–infrared (TG-FTIR), scanning electron microscopy (SEM), microcalorimetry, and Raman Spectroscopy. The tests showed that the RPUF/HPCTP composites reached the maximum limiting oxygen index (LOI) value of 24.2 vol% and passed UL-94 V-1 rating. It was also observed that RPUF/HPCTP composites exhibited thermal conductivity of 0.035 W m<sup>-1</sup>K<sup>-1</sup>, suggesting excellent thermal insulation property of the composites. Thermal kinetic investigation confirmed that the activation energy of the initial RPUF is 102.26 kJ·mol<sup>-1</sup>. RPUF/HPCTP15 possessed the highest activation energy of 105.24 kJ·mol<sup>-1</sup>, indicating the highest thermal stability. TG-FTIR confirmed that HPCTP could decrease the release intensity of CO<sub>2</sub> and isocyanate, indicating enhanced fire safety of RPUF/HPCTP composites. Raman spectra and SEM investigation showed that the graphitization degree and compactness of char residue for RPUF/HPCTP composites were significantly enhanced, which were benefit to fire retarding enhancement for the composites in fire. This work provided a new way for preparation of fire retarded RPUF composites.</p>\",\"PeriodicalId\":678,\"journal\":{\"name\":\"Journal of Thermal Analysis and Calorimetry\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Analysis and Calorimetry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10973-024-13485-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10973-024-13485-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用磷氮阻燃剂六苯氧基环三磷(HPCTP)作为硬质聚氨酯泡沫(RPUF)的阻燃剂,采用全水发泡技术制造了一系列 RPUF/HPCTP 复合材料。在此基础上,通过热重(TG)、热重-红外(TG-FTIR)、扫描电子显微镜(SEM)、微量热仪和拉曼光谱对复合材料的阻燃性能进行了研究。测试表明,RPUF/HPCTP 复合材料的最大极限氧指数(LOI)值为 24.2 Vol%,并通过了 UL-94 V-1 评级。此外,还观察到 RPUF/HPCTP 复合材料的导热系数为 0.035 W m-1K-1,表明复合材料具有优异的隔热性能。热动力学研究证实,初始 RPUF 的活化能为 102.26 kJ-mol-1。RPUF/HPCTP15 的活化能最高,为 105.24 kJ-mol-1,表明其热稳定性最高。TG-FTIR 证实,HPCTP 可降低 CO2 和异氰酸酯的释放强度,这表明 RPUF/HPCTP 复合材料的防火安全性有所提高。拉曼光谱和扫描电镜研究表明,RPUF/HPCTP 复合材料的石墨化程度和炭渣致密性显著提高,有利于增强复合材料在火灾中的阻燃性能。这项研究为制备阻燃 RPUF 复合材料提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flame retardant rigid polyurethane foam composites based on hexaphenoxycyclotriphosphonitrile: flame retardancy, combustion properties and pyrolysis kinetics

The phosphorus–nitrogen flame retardant hexaphenoxycyclotriphosphorus (HPCTP) was used as a flame retardant for rigid polyurethane foam (RPUF) to fabricate a series of RPUF/HPCTP composites by all-water foaming technology. On this basis, the fire retardancy of the composites were investigated by thermogravimetric (TG), thermogravimetric–infrared (TG-FTIR), scanning electron microscopy (SEM), microcalorimetry, and Raman Spectroscopy. The tests showed that the RPUF/HPCTP composites reached the maximum limiting oxygen index (LOI) value of 24.2 vol% and passed UL-94 V-1 rating. It was also observed that RPUF/HPCTP composites exhibited thermal conductivity of 0.035 W m-1K-1, suggesting excellent thermal insulation property of the composites. Thermal kinetic investigation confirmed that the activation energy of the initial RPUF is 102.26 kJ·mol-1. RPUF/HPCTP15 possessed the highest activation energy of 105.24 kJ·mol-1, indicating the highest thermal stability. TG-FTIR confirmed that HPCTP could decrease the release intensity of CO2 and isocyanate, indicating enhanced fire safety of RPUF/HPCTP composites. Raman spectra and SEM investigation showed that the graphitization degree and compactness of char residue for RPUF/HPCTP composites were significantly enhanced, which were benefit to fire retarding enhancement for the composites in fire. This work provided a new way for preparation of fire retarded RPUF composites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
期刊最新文献
Thermal characterization of plat heat exchanger made from polymer biocomposite reinforced by silicon carbide Recent advances in thermal analysis and calorimetry presented at the 3rd Journal of Thermal Analysis and Calorimetry Conference and 9th V4 (Joint Czech–Hungarian–Polish–Slovakian) Thermoanalytical Conference (2023) Spalling behavior of high-strength polypropylene fiber-reinforced concrete subjected to elevated temperature Review about the history of thermal analysis in Hungary Study of thermal behavior and crystallization kinetics of glass microspheres in the Y3Al5O12-Al2O3 system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1